Page 138 - Handbook Of Integral Equations
P. 138

Remark. For arbitrary f(x), expandable into power series, the formulas of item 2 can
                                                                                          ◦
                     be used, in which one should set N = ∞. In this case, the radius of convergence of the
                     solution y(x) is equal to the radius of convergence of f(x).
                     3 . For logarithmic-polynomial right-hand side,
                      ◦
                                                          N
                                                                 n
                                               f(x)=ln x     A n x  ,
                                                          n=0
                     the solution with logarithmic singularity at zero is given by

                           
                                  N               N
                                       A n     n                 n
                                                      A n D n λ
                            ln x            x +                x         for λ < λ 0 ,
                           
                           
                                    1 – (λ/λ n )     [1 – (λ/λ n )]
                                                              2
                           
                                 n=0              n=0
                      y(x)=
                                  N               N
                                                      A n D n λ

                                      A n     n                 n     β
                            ln x            x +                x + Cx    for λ > λ 0 and λ ≠ λ n ,
                           
                           
                                   1 – (λ/λ n )     [1 – (λ/λ n )] 2
                                 n=0              n=0
                                                     n     k                  2   n     k

                              1              n          (–1)             n+1  π      (–1)
                        λ n =    ,  I(n)=(–1)  ln 2 +         ,  D n =(–1)     +          .
                             I(n)                        k                   12       k 2
                                                    k=1                          k=1
                     4 . For arbitrary f(x), the transformation
                      ◦
                                      1 2z
                                                1 2τ
                                                                            –z
                                                             –z
                                  x = e ,   t = e ,   y(x)= e w(z),  f(x)= e g(z)
                                      2         2
                     leads to an integral equation with difference kernel of the form 2.9.51:
                                                     z
                                                         w(τ) dτ
                                            w(z) – λ             = g(z).
                                                       cosh(z – τ)
                                                    –∞
                                x  x + b
               42.   y(x) – λ        y(t) dt = f(x).
                             a  t + b
                     This is a special case of equation 2.9.1 with g(x)= x + b.
                        Solution:
                                                         x  x + b
                                          y(x)= f(x)+ λ       e λ(x–t) f(t) dt.
                                                        a  t + b
                               2        x  t
               43.   y(x)=                   y(t) dt.
                                2
                           (1 – λ )x 2  λx 1+ t
                     This equation is encountered in nuclear physics and describes deceleration of neutrons in
                     matter.
                     1 . Solution with λ =0:
                      ◦
                                                           C
                                                   y(x)=        ,
                                                         (1 + x) 2
                     where C is an arbitrary constant.
                     2 .For λ ≠ 0, the solution can be found in the series form
                      ◦
                                                         ∞
                                                               n
                                                  y(x)=    A n x .
                                                        n=0
                     •
                       Reference: I. Sneddon (1951).
                 © 1998 by CRC Press LLC





               © 1998 by CRC Press LLC
                                                                                                             Page 117
   133   134   135   136   137   138   139   140   141   142   143