Page 141 - Handbook Of Integral Equations
P. 141

x

                                      λ µ
               51.   y(x)+ A    (x – t)x t y(t) dt = f(x).
                              a
                                         –λ
                     The substitution u(x)= x y(x) leads to an equation of the form 2.1.49:
                                                   x
                                                                        –λ
                                         u(x)+ A   (x – t)t λ+µ u(t) dt = f(x)x .
                                                 a
                              x

                                      λ
                                  λ
               52.   y(x)+ A    (x – t )y(t) dt = f(x).
                              a
                                                                λ
                     This is a special case of equation 2.9.5 with g(x)= Ax .
                        Solution:                   x
                                                1




                                    y(x)= f(x)+       u (x)u (t) – u (x)u (t) f(t) dt,
                                                       1
                                                            2
                                                                 2
                                                                      1
                                               W
                                                   a
                     where the primes denote differentiation with respect to the argument specified in the paren-
                     theses, and u 1 (x), u 2 (x) is a fundamental system of solutions of the second-order linear ho-
                     mogeneous ordinary differential equation u     + Aλx λ–1 u = 0; the functions u 1 (x) and u 2 (x)
                                                       xx
                     are expressed in terms of Bessel functions or modified Bessel functions, depending on the
                     sign of A:
                        For Aλ >0,
                                                √                        √
                            2q         √         Aλ  q          √         Aλ   q       λ +1
                       W =    , u 1 (x)=  xJ 1      x   , u 2 (x)=  xY 1     x   , q =     ,
                            π               2q   q                   2q   q             2
                        For Aλ <0,
                                             √                           √
                                     √         |Aλ|  q         √           |Aλ|  q      λ +1
                      W = –q, u 1 (x)=  xI 1       x  , u 2 (x)=  xλK 1        x  , q =      .
                                          2q   q                     2q    q              2
                             x

                                  λ λ–1    2λ–1
               53.   y(x) –    Ax t    + Bt    y(t) dt = f(x).
                            a
                     The transformation
                                                         λ
                                                 λ
                                             z = x ,  τ = t ,  y(x)= Y (z)
                     leads to an equation of the form 2.1.6:
                                      z
                                         A    B
                                                                                   λ
                              Y (z) –      z +  τ Y (τ) dτ = F(z),  F(z)= f(x), b = a .
                                     b   λ    λ
                             x

                                  λ+µ λ–µ–1    µ 2λ–µ–1
               54.   y(x) –    Ax    t    + Bx t       y(t) dt = f(x).
                            a
                                         µ
                     The substitution y(x)= x w(x) leads to an equation of the form 2.1.53:
                                              x
                                                  λ λ–1   2λ–1         –µ
                                      w(x) –   Ax t    + Bt   w(t) dt = x f(x).
                                            a
                                x
                                   λ–1 µ         λ+µ–1
               55.   y(x)+ A    λx    t – (λ + µ)x     y(t) dt = f(x).
                              a
                     This equation can be obtained by differentiating equation 1.1.51:
                                 x                                          x

                                         λ µ   λ+µ
                                   1+ A(x t – x   ) y(t) dt = F(x),  F(x)=   f(x) dx.
                                a                                          a
                        Solution:
                                  d     x λ     x     –λ                      Aµ   µ+λ
                           y(x)=              t F(t) Φ(t) dt ,   Φ(x)=exp –       x    .
                                 dx   Φ(x)  a        t                       µ + λ
                 © 1998 by CRC Press LLC


               © 1998 by CRC Press LLC
                                                                                                             Page 120
   136   137   138   139   140   141   142   143   144   145   146