Page 140 - Handbook Of Integral Equations
P. 140

◦
                     3 . For special λ = λ n ,(n =1, 2, ... ), the solution differs in one term and has the form
                                n–1                 N
                                       A m     m            A m     m     λ n  n       n
                                                                          ¯
                          y(x)=               x +                  x – A n   x ln x + Cx ,
                                    1 – (λ n /λ m )     1 – (λ n /λ m )   λ n
                                m=0                m=n+1
                                  1  z ln zdz    –1
                                    n

                           ¯
                     where λ n =    √         .
                                 0   a + bz 2
                                                                                 ◦
                     4 . For arbitrary f(x), expandable into power series, the formulas of item 2 can be used, in
                      ◦
                     which one should set N = ∞. In this case, the radius of convergence of the solution y(x)is
                     equal to the radius of convergence of f(x).
                                x  y(t) dt
               48.   y(x)+ λ             = f(x).
                             a (x – t) 3/4
                     This equation admits solution by quadratures (see equation 2.1.60 and Section 9.4-2).
                 2.1-7. Kernels Containing Arbitrary Powers

                                x
                                      λ
               49.   y(x)+ A    (x – t)t y(t) dt = f(x).
                              a
                                                               λ
                     This is a special case of equation 2.9.4 with g(t)= At .
                        Solution:
                                                    x

                                               A                          λ
                                   y(x)= f(x)+       y 1 (x)y 2 (t) – y 2 (x)y 1 (t) t f(t) dt,
                                               W
                                                   a
                     where y 1 (x), y 2 (x) is a fundamental system of solutions of the second-order linear homo-
                                                            λ
                     geneous ordinary differential equation y     + Ax y = 0; the functions y 1 (x) and y 2 (x) are
                                                     xx
                     expressed in terms of Bessel functions or modified Bessel functions, depending on the sign
                     of A:
                        For A >0,
                                                 √                       √
                             2q         √         A  q          √         A  q        λ +2
                        W =    , y 1 (x)=  xJ 1     x   , y 2 (x)=  xY 1    x   , q =     ,
                              π              2q   q                  2q   q            2
                        For A <0,
                                               √                         √
                                       √         |A|  q         √         |A|  q      λ +2
                        W = –q, y 1 (x)=  xI 1     x   , y 2 (x)=  xK 1      x  , q =      .
                                           2q   q                    2q   q             2
                              x

                                 λ µ
               50.   y(x)+ A    x t y(t) dt = f(x).
                              a
                                                                 λ
                                                                            µ
                     This is a special case of equation 2.9.2 with g(x)= –Ax and h(t)= t (λ and µ are arbitrary
                     numbers).
                        Solution:
                                                           x
                                            y(x)= f(x) –   R(x, t)f(t) dt,
                                                         a
                                    
                                                   A
                                        λ µ               λ+µ+1  λ+µ+1
                                      Ax t exp                          for λ + µ +1 ≠ 0,
                                                       t     – x
                            R(x, t)=            λ + µ +1
                                       λ–A µ+A
                                      Ax   t                            for λ + µ + 1=0.
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 119
   135   136   137   138   139   140   141   142   143   144   145