Page 142 - Handbook Of Integral Equations
P. 142

x

                                    λ+1      λ      λ
               56.   y(x)+     ABx     – ABx t – Ax – B y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.7.
                        Solution:
                                                          x
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a
                                                               x

                               λ
                     R(x, t)=(Ax +B)exp   A   x λ+1  –t λ+1    +B 2  exp  A   s λ+1  –t λ+1   +B(x–s) ds.
                                         λ +1                 t     λ +1
                               x
                                    λ       λ+1    λ
               57.   y(x)+     ABxt – ABt      + At + B y(t) dt = f(x).
                            a
                     This is a special case of equation 2.9.8.
                        Solution:
                                                         x

                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        a
                                                                x
                                λ
                     R(x, t)= –(At +B)exp  A   t λ+1  –x λ+1     +B 2  exp  A   s λ+1 –x λ+1   +B(t–s) ds.
                                         λ +1                 t     λ +1

                              x
  x + b    µ
               58.   y(x) – λ           y(t) dt = f(x).
                             a   t + b
                                                                   µ
                     This is a special case of equation 2.9.1 with g(x)=(x + b) .
                        Solution:
                                                         x + b   λ(x–t)
                                                               µ
                                                       x
                                        y(x)= f(x)+ λ           e    f(t) dt.
                                                      a   t + b
                                 µ
                                x  x + b
               59.   y(x) – λ    µ    y(t) dt = f(x).
                             a  t + b
                                                               µ
                     This is a special case of equation 2.9.1 with g(x)= x + b.
                        Solution:
                                                        x
                                                           µ
                                                          x + b
                                         y(x)= f(x)+ λ     µ   e λ(x–t) f(t) dt.
                                                       a  t + b
                              x
                                y(t) dt
               60.   y(x) – λ           = f(x),   0 < α <1.
                             0  (x – t) α
                     Generalized Abel equation of the second kind.
                      ◦
                     1 . Assume that the number α can be represented in the form
                                      m
                               α =1 –   ,    where  m =1, 2, ... ,  n =2, 3, ...  (m < n).
                                      n
                     In this case, the solution of the generalized Abel equation of the second kind can be written
                     in closed form (in quadratures):
                                                         x

                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        0



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 121
   137   138   139   140   141   142   143   144   145   146   147