Page 143 - Handbook Of Integral Equations
P. 143

where

                           n–1  ν  ν                 m–1
                              λ Γ (m/n)   (νm/n)–1  b
                     R(x)=              x        +      ε µ exp ε µ bx
                               Γ(νm/n)            m
                           ν=1                       µ=0
                                         n–1  ν  ν       m–1              x
                                       b     λ Γ (m/n)                     (νm/n)–1
                                     +                     ε µ exp ε µ bx  t     exp –ε µ bt dt ,
                                       m      Γ(νm/n)                   0
                                         ν=1            µ=0
                                                        2πµi     2

                               n/m n/m
                           b = λ  Γ    (m/n),  ε µ =exp      ,  i = –1,  µ =0, 1, ... , m – 1.
                                                         m
                     2 . Solution with any α from 0 < α <1:
                      ◦
                                                                                       n


                                        x                              ∞            1–α
                                                                           λΓ(1 – α)x
                          y(x)= f(x)+    R(x – t)f(t) dt,  where  R(x)=                  .
                                      0                                     xΓ n(1 – α)
                                                                       n=1
                     •
                       References: H. Brakhage, K. Nickel, and P. Rieder (1965), V. I. Smirnov (1974).
                            λ      x  y(t) dt
               61.   y(x) –                = f(x),    0 < α ≤ 1.
                           x α  0  (x – t) 1–α
                     1 . The solution of the homogeneous equation (f ≡ 0) is
                      ◦
                                            y(x)= Cx β    (β > –1, λ > 0).                  (1)
                     Here C is an arbitrary constant, and β = β(λ) is determined by the transcendental equation
                                                  λB(α, β + 1) = 1,                         (2)

                     where B(p, q)=    0 1  z p–1 (1 – z) q–1  dz is the beta function.
                      ◦
                     2 . For a polynomial right-hand side,
                                                         N
                                                               n
                                                   f(x)=    A n x
                                                         n=0
                     the solution bounded at zero is given by

                                          N
                                       
                                                A n
                                       
                                                      n
                                                     x         for λ < α,
                                             1 – (λ/λ n )
                                       
                                       
                                       
                                         n=0
                                 y(x)=
                                        N
                                               A n    n    β
                                                      x + Cx    for λ > α and λ ≠ λ n ,
                                       
                                       
                                       
                                            1 – (λ/λ n )
                                         n=0
                                           (α) n+1
                                      λ n =     ,    (α) n+1 = α(α +1) ... (α + n).
                                             n!
                     Here C is an arbitrary constant, and β = β(λ) is determined by the transcendental equation (2).
                        For special λ = λ n (n =1, 2, ... ), the solution differs in one term and has the form
                                n–1                 N
                                       A m     m            A m     m     λ n  n       n
                                                                          ¯
                          y(x)=               x +                  x – A n   x ln x + Cx ,
                                    1 – (λ n /λ m )     1 – (λ n /λ m )   λ n
                                m=0                m=n+1
                                  1                 –1

                           ¯
                                           z ln zdz
                     where λ n =   (1 – z) α–1 n     .
                                 0
                 © 1998 by CRC Press LLC

               © 1998 by CRC Press LLC
                                                                                                             Page 122
   138   139   140   141   142   143   144   145   146   147   148