Page 139 - Handbook Of Integral Equations
P. 139

2.1-6. Kernels Containing Square Roots and Fractional Powers

                                x    √
               44.   y(x)+ A    (x – t) ty(t) dt = f(x).
                              a
                                                             1
                     This is a special case of equation 2.1.49 with λ = .
                                                             2
                              x

                                 √    √
               45.   y(x)+ A      x –   t y(t) dt = f(x).
                              a
                                                             1
                     This is a special case of equation 2.1.52 with λ = .
                                                             2
                                x  y(t) dt
               46.   y(x)+ λ    √      = f(x).
                             a    x – t
                        Abel’s equation of the second kind. This equation is encountered in problems of heat
                     and mass transfer.
                        Solution:
                                                        x

                                                               2
                                       y(x)= F(x)+ πλ 2  exp[πλ (x – t)]F(t) dt,
                                                       a
                     where
                                                             x
                                                               f(t) dt
                                              F(x)= f(x) – λ   √     .
                                                            a   x – t
                     •
                       References: H. Brakhage, K. Nickel, and P. Rieder (1965), Yu. I. Babenko (1986).
                              x
                                  y(t) dt
               47.   y(x) – λ   √          = f(x),    a >0,  b >0.
                                    2
                             0    ax + bt 2
                      ◦
                     1 . The solution of the homogeneous equation (f ≡ 0) is
                                            y(x)= Cx β   (β > –1, λ > 0).                   (1)
                     Here C is an arbitrary constant, and β = β(λ) is determined by the transcendental equation

                                                                      β
                                                                   1  z dz
                                       λI(β) = 1,   where I(β)=     √       .               (2)
                                                                 0   a + bz 2
                     2 . For a polynomial right-hand side,
                      ◦
                                                         N
                                                               n
                                                   f(x)=    A n x
                                                         n=0
                     the solution bounded at zero is given by

                                       
                                         N
                                               A n
                                       
                                                     n
                                                    x         for λ < λ 0 ,
                                       
                                            1 – (λ/λ n )
                                       
                                       
                                         n=0
                                 y(x)=
                                        N
                                               A n    n     β
                                       
                                                     x + Cx    for λ > λ 0 and λ ≠ λ n ,
                                       
                                       
                                       
                                           1 – (λ/λ n )
                                         n=0
                                          √                              1
                                                                            n
                                            b              1               z dz
                                 λ 0 =             ,  λ n =   ,  I(n)=    √       .
                                     Arsinh   b/a         I(n)         0    a + bz 2
                     Here C is an arbitrary constant, and β = β(λ) is determined by the transcendental equation (2).
                 © 1998 by CRC Press LLC

               © 1998 by CRC Press LLC
                                                                                                             Page 118
   134   135   136   137   138   139   140   141   142   143   144