Page 286 - Handbook Of Integral Equations
P. 286

4.1-7. Singular Equations

               In this subsection, all singular integrals are understood in the sense of the Cauchy principal value.

                             B      1  y(t) dt
               65.   Ay(x)+              = f(x),    –1< x <1.
                             π  –1 t – x
                                                                2
                                                            2
                     Without loss of generality we may assume that A + B =1.
                      ◦
                     1 . The solution bounded at the endpoints:
                                                 1
                                           B     g(x) f(t) dt              α      1–α
                              y(x)= Af(x) –                ,    g(x) = (1 + x) (1 – x)  ,   (1)
                                            π  –1  g(t) t – x
                     where α is the solution of the trigonometric equation

                                                  A + B cot(πα) = 0                         (2)


                                                                          1  f(t)
                     on the interval 0 < α < 1. This solution y(x) exists if and only if  dt =0.
                                                                         –1  g(t)
                      ◦
                     2 . The solution bounded at the endpoint x = 1 and unbounded at the endpoint x = –1:
                                            B     1  g(x) f(t) dt          α      –α
                               y(x)= Af(x) –               ,    g(x) = (1 + x) (1 – x) ,    (3)
                                            π  –1  g(t) t – x

                     where α is the solution of the trigonometric equation (2) on the interval –1< α <0.

                      ◦
                     3 . The solution unbounded at the endpoints:
                                             1
                                        B    g(x) f(t) dt                     α      –1–α
                          y(x)= Af(x) –                 + Cg(x),   g(x)=(1 + x) (1 – x)  ,  (4)
                                        π  –1  g(t) t – x
                     where C is an arbitrary constant and α is the solution of the trigonometric equation (2) on the
                     interval –1< α <0.
                     •
                       Reference: I. K. Lifanov (1996).

                               
  1         1
                              1
               66.   y(x) – λ         –            y(t) dt = f(x),  0 < x <1.
                                 t – x  x + t – 2xt
                             0
                     Tricomi’s equation.
                        Solution:
                                               1  α   α  
                      	        β
                                 1             t (1 – x)   1        1             C(1 – x)
                        y(x)=         f(x)+                   –            f(t) dt +       ,
                                                α
                                  2 2
                              1+ λ π           x (1 – t) α  t – x  x + t – 2xt       x 1+β
                                             0
                                    2                           βπ
                                α =   arctan(λπ)(–1< α < 1),  tan  = λπ (–2< β < 0),
                                    π                           2
                     where C is an arbitrary constant.
                     •
                       References: P. P. Zabreyko, A. I. Koshelev, et al. (1975), F. G. Tricomi (1985).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 265
   281   282   283   284   285   286   287   288   289   290   291