Page 290 - Handbook Of Integral Equations
P. 290

n
                              b
               10.   y(x) – λ       A k e γ k (x–t)  y(t) dt = f(x).
                             a
                                k=1
                     This is a special case of equation 4.9.20 with g k (x)= e γ k x  and h k (t)= A k e –γ k t .
                           1      ∞
               11.   y(x) –      e –|x–t| y(t) dt = Ae µx ,  0 < µ <1.
                           2  0
                     Solution:
                                                             2
                                       y(x)= C(1 + x)+ Aµ –2  (µ – 1)e µx  – µ +1 ,
                     where C is an arbitrary constant.
                     •
                       Reference: P. P. Zabreyko, A. I. Koshelev, et al. (1975).

                              ∞
               12.   y(x)+ λ    e –|x–t| y(t) dt = f(x).
                             0
                     Solution:
                                                λ      ∞      √
                                  y(x)= f(x) – √         exp – 1+2λ |x – t| f(t) dt
                                               1+2λ   0

                                              λ +1     ∞    
 √
                                      + 1 – √            exp – 1+2λ (x + t) f(t) dt,
                                              1+2λ    0
                               1
                     where λ > – .
                               2
                     •
                       Reference: F. D. Gakhov and Yu. I. Cherskii (1978).

                              ∞
               13.   y(x) – λ   e –|x–t| y(t) dt =0,  λ >0.
                             –∞
                     The Lalesco–Picard equation.
                        Solution:
                                             √                 √
                                                                                   1
                                    C 1 exp x 1 – 2λ + C 2 exp –x 1 – 2λ  for 0 < λ < ,
                                                                                    2
                                   
                                                                                1
                              y(x)=  C 1 + C 2 x                         for λ = ,
                                                                                2
                                            √                √
                                                                               1
                                     C 1 cos x 2λ – 1 + C 2 sin x 2λ – 1  for λ > ,
                                                                                2
                     where C 1 and C 2 are arbitrary constants.
                     •
                       Reference: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971).

                              ∞
               14.   y(x)+ λ    e –|x–t| y(t) dt = f(x).
                             –∞
                                        1
                      ◦
                     1 . Solution with λ > – :
                                        2
                                                 λ      ∞     √
                                  y(x)= f(x) – √         exp – 1+2λ |x – t| f(t) dt.
                                                1+2λ   –∞
                               1
                     2 .If λ ≤ – , for the equation to be solvable the conditions
                      ◦
                               2

                                     ∞                        ∞
                                       f(x) cos(ax) dx =0,      f(x) sin(ax) dx =0,
                                    –∞                       –∞
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 269
   285   286   287   288   289   290   291   292   293   294   295