Page 295 - Handbook Of Integral Equations
P. 295

b

               4.    y(x) – λ  cosh[β(x + t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.12 with g(x) = cosh(βx) and h(t) = sinh(βt).
                        Solution:

                                       y(x)= f(x)+ λ A 1 cosh(βx)+ A 2 sinh(βx) ,
                     where A 1 and A 2 are the constants determined by the formulas presented in 4.9.12.
                                 n
                              b

               5.    y(x) – λ       A k cosh[β k (x – t)] y(t) dt = f(x),  n =1, 2, ...
                             a
                                 k=1
                     This is a special case of equation 4.9.20.
                                b  cosh(βx)
               6.    y(x) – λ           y(t) dt = f(x).
                             a cosh(βt)
                                                                                  1
                     This is a special case of equation 4.9.1 with g(x) = cosh(βx) and h(t)=  .
                                                                               cosh(βt)
                                b  cosh(βt)
               7.    y(x) – λ           y(t) dt = f(x).
                             a cosh(βx)
                                                                 1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = cosh(βt).
                                                              cosh(βx)
                              b

                                   k        m
               8.    y(x) – λ  cosh (βx) cosh (µt)y(t) dt = f(x).
                             a
                                                                                   m
                                                                 k
                     This is a special case of equation 4.9.1 with g(x) = cosh (βx) and h(t) = cosh (µt).
                                b
                                     m
                                k
               9.    y(x) – λ  t cosh (βx)y(t) dt = f(x).
                             a
                                                                 m              k
                     This is a special case of equation 4.9.1 with g(x) = cosh (βx) and h(t)= t .

                              b
                                      m
                                 k
               10.   y(x) – λ  x cosh (βt)y(t) dt = f(x).
                             a
                                                               k
                                                                             m
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = cosh (βt).

                              b
               11.   y(x) – λ  [A + B(x – t) cosh(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = cosh(βx).
                                b
               12.   y(x) – λ  [A + B(x – t) cosh(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = cosh(βt).

                              ∞     y(t) dt
               13.   y(x)+ λ                 = f(x).
                             –∞ cosh[b(x – t)]
                     Solution with b > π|λ|:
                                                  ∞
                                        2λb        sinh[2k(x – t)]           b         πλ
                         y(x)= f(x) – √                        f(t) dt,  k =   arccos    .
                                           2 2
                                       2
                                      b – π λ   –∞  sinh[2b(x – t)]          π        b
                     •
                       Reference: F. D. Gakhov and Yu. I. Cherskii (1978).
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 274
   290   291   292   293   294   295   296   297   298   299   300