Page 296 - Handbook Of Integral Equations
P. 296

4.3-2. Kernels Containing Hyperbolic Sine

                                b
               14.   y(x) – λ  sinh(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = sinh(βx) and h(t)=1.

                                b
               15.   y(x) – λ  sinh(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = sinh(βt).

                                b
               16.   y(x) – λ  sinh[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.16 with g(x) = sinh(βx) and h(t) = cosh(βt).
                        Solution:

                                       y(x)= f(x)+ λ A 1 sinh(βx)+ A 2 cosh(βx) ,
                     where A 1 and A 2 are the constants determined by the formulas presented in 4.9.16.

                                b
               17.   y(x) – λ  sinh[β(x + t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.15 with g(x) = sinh(βx) and h(t) = cosh(βt).
                        Solution:

                                       y(x)= f(x)+ λ A 1 sinh(βx)+ A 2 cosh(βx) ,
                     where A 1 and A 2 are the constants determined by the formulas presented in 4.9.15.
                                 n
                              b

               18.   y(x) – λ       A k sinh[β k (x – t)] y(t) dt = f(x),  n =1, 2, ...
                             a   k=1
                     This is a special case of equation 4.9.20.

                                b  sinh(βx)
               19.   y(x) – λ           y(t) dt = f(x).
                             a sinh(βt)
                                                                                 1
                     This is a special case of equation 4.9.1 with g(x) = sinh(βx) and h(t)=  .
                                                                              sinh(βt)

                              b  sinh(βt)
               20.   y(x) – λ           y(t) dt = f(x).
                             a sinh(βx)
                                                                 1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = sinh (βt).
                                                              sinh(βx)
                                b
                                            m
                                   k
               21.   y(x) – λ  sinh (βx) sinh (µt)y(t) dt = f(x).
                             a
                                                                                   m
                                                                 k
                     This is a special case of equation 4.9.1 with g(x) = sinh (βx) and h(t) = sinh (µt).
                                b
                                     m
                                k
               22.   y(x) – λ  t sinh (βx)y(t) dt = f(x).
                             a
                                                                 m              k
                     This is a special case of equation 4.9.1 with g(x) = sinh (βx) and h(t)= t .

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 275
   291   292   293   294   295   296   297   298   299   300   301