Page 301 - Handbook Of Integral Equations
P. 301

4.3-5. Kernels Containing Combination of Hyperbolic Functions


                              b
                                   k        m
               50.   y(x) – λ  cosh (βx) sinh (µt)y(t) dt = f(x).
                             a
                                                                 k
                                                                                   m
                     This is a special case of equation 4.9.1 with g(x) = cosh (βx) and h(t) = sinh (µt).
                                b
               51.   y(x) – λ  [A sinh(αx) cosh(βt)+ B sinh(γx) cosh(δt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x) = sinh(αx), h 1 (t)= A cosh(βt), g 2 (x)=
                     sinh(γx), and h 2 (t)= B cosh(δt).

                                b
                                   k
                                            m
               52.   y(x) – λ  tanh (γx) coth (µt)y(t) dt = f(x).
                             a
                                                                 k                m
                     This is a special case of equation 4.9.1 with g(x) = tanh (γx) and h(t) = coth (µt).
                                b
               53.   y(x) – λ  [A tanh(αx) coth(βt)+ B tanh(γx) coth(δt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x) = tanh(αx), h 1 (t)= A coth(βt), g 2 (x)=
                     tanh(γx), and h 2 (t)= B coth(δt).


               4.4. Equations Whose Kernels Contain Logarithmic
                      Functions

                 4.4-1. Kernels Containing Logarithmic Functions

                                b
               1.    y(x) – λ  ln(γx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = ln(γx) and h(t)=1.

                                b
               2.    y(x) – λ  ln(γt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = ln(γt).

                              b
               3.    y(x) – λ  (ln x – ln t)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.3 with g(x)=ln x.


                              b  ln(γx)
               4.    y(x) – λ         y(t) dt = f(x).
                             a ln(γt)
                                                                              1
                     This is a special case of equation 4.9.1 with g(x) = ln(γx) and h(t)=  .
                                                                            ln(γt)

                              b  ln(γt)
               5.    y(x) – λ         y(t) dt = f(x).
                             a ln(γx)
                                                                1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = ln(γt).
                                                              ln(γx)



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 280
   296   297   298   299   300   301   302   303   304   305   306