Page 306 - Handbook Of Integral Equations
P. 306

n
                              b

               21.   y(x) – λ       A k sin[β k (x – t)] y(t) dt = f(x),  n =1, 2, ...
                             a
                                 k=1
                     This equation can be reduced to a special case of equation 4.9.20; the formula sin[β(x – t)] =
                     sin(βx) cos(βt) – sin(βt) cos(βx) must be used.
                                b  sin(βx)
               22.   y(x) – λ         y(t) dt = f(x).
                             a sin(βt)
                                                                                1
                     This is a special case of equation 4.9.1 with g(x) = sin(βx) and h(t)=  .
                                                                             sin(βt)
                                b  sin(βt)
               23.   y(x) – λ         y(t) dt = f(x).
                             a sin(βx)
                                                                1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = sin (βt).
                                                              sin(βx)
                              b

                                  k
                                          m
               24.   y(x) – λ  sin (βx) sin (µt)y(t) dt = f(x).
                             a
                                                                                 m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = sin (βx) and h(t) = sin (µt).
                                b
                                    m
                                k
               25.   y(x) – λ  t sin (βx)y(t) dt = f(x).
                             a
                                                                               k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = sin (βx) and h(t)= t .

                              b
                                    m
                                 k
               26.   y(x) – λ  x sin (βt)y(t) dt = f(x).
                             a
                                                               k
                                                                           m
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = sin (βt).
                                b
               27.   y(x) – λ  [A + B(x – t) sin(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = sin(βt).
                                b
               28.   y(x) – λ  [A + B(x – t) sin(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = sin(βx).
                              b

               29.   y(x)+ A    sin(λ|x – t|)y(t) dt = f(x).
                              a
                     This is a special case of equation 4.9.39 with g(t)= A.
                      ◦
                     1 . The function y = y(x) obeys the following second-order linear nonhomogeneous ordinary
                     differential equation with constant coefficients:
                                                                   2

                                           y     + λ(2A + λ)y = f (x)+ λ f(x).              (1)
                                                            xx
                                            xx
                     The boundary conditions for (1) have the form (see 4.9.39)

                            sin[λ(b – a)]ϕ (b) – λ cos[λ(b – a)]ϕ(b)= λϕ(a),
                                       x
                                                                        ϕ(x)= y(x) – f(x).  (2)
                            sin[λ(b – a)]ϕ (a)+ λ cos[λ(b – a)]ϕ(a)= –λϕ(b),

                                       x
                        Equation (1) under the boundary conditions (2) determines the solution of the original
                     integral equation.
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 285
   301   302   303   304   305   306   307   308   309   310   311