Page 309 - Handbook Of Integral Equations
P. 309
b tan(βx)
37. y(x) – λ y(t) dt = f(x).
a tan(βt)
1
This is a special case of equation 4.9.1 with g(x) = tan(βx) and h(t)= .
tan(βt)
b tan(βt)
38. y(x) – λ y(t) dt = f(x).
a tan(βx)
1
This is a special case of equation 4.9.1 with g(x)= and h(t) = tan(βt).
tan(βx)
b
k
m
39. y(x) – λ tan (βx) tan (µt)y(t) dt = f(x).
a
m
k
This is a special case of equation 4.9.1 with g(x) = tan (βx) and h(t) = tan (µt).
b
k
m
40. y(x) – λ t tan (βx)y(t) dt = f(x).
a
k
m
This is a special case of equation 4.9.1 with g(x) = tan (βx) and h(t)= t .
b
m
k
41. y(x) – λ x tan (βt)y(t) dt = f(x).
a
m
k
This is a special case of equation 4.9.1 with g(x)= x and h(t) = tan (βt).
b
42. y(x) – λ [A + B(x – t) tan(βt)]y(t) dt = f(x).
a
This is a special case of equation 4.9.8 with h(t) = tan(βt).
b
43. y(x) – λ [A + B(x – t) tan(βx)]y(t) dt = f(x).
a
This is a special case of equation 4.9.10 with h(x) = tan(βx).
4.5-4. Kernels Containing Cotangent
b
44. y(x) – λ cot(βx)y(t) dt = f(x).
a
This is a special case of equation 4.9.1 with g(x) = cot(βx) and h(t)=1.
b
45. y(x) – λ cot(βt)y(t) dt = f(x).
a
This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = cot(βt).
b
46. y(x) – λ [A cot(βx)+ B cot(βt)]y(t) dt = f(x).
a
This is a special case of equation 4.9.4 with g(x) = cot(βx).
© 1998 by CRC Press LLC
© 1998 by CRC Press LLC
Page 288