Page 309 - Handbook Of Integral Equations
P. 309

b  tan(βx)
               37.   y(x) – λ          y(t) dt = f(x).
                             a tan(βt)
                                                                                1
                     This is a special case of equation 4.9.1 with g(x) = tan(βx) and h(t)=  .
                                                                             tan(βt)

                                b  tan(βt)
               38.   y(x) – λ          y(t) dt = f(x).
                             a tan(βx)
                                                                 1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = tan(βt).
                                                              tan(βx)
                                b
                                  k
                                          m
               39.   y(x) – λ  tan (βx) tan (µt)y(t) dt = f(x).
                             a
                                                                                m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = tan (βx) and h(t) = tan (µt).
                                b
                                k
                                    m
               40.   y(x) – λ  t tan (βx)y(t) dt = f(x).
                             a
                                                                               k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = tan (βx) and h(t)= t .
                              b

                                     m
                                 k
               41.   y(x) – λ  x tan (βt)y(t) dt = f(x).
                             a
                                                                           m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = tan (βt).
                              b

               42.   y(x) – λ  [A + B(x – t) tan(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = tan(βt).
                                b
               43.   y(x) – λ  [A + B(x – t) tan(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = tan(βx).


                 4.5-4. Kernels Containing Cotangent

                              b

               44.   y(x) – λ  cot(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = cot(βx) and h(t)=1.

                                b
               45.   y(x) – λ  cot(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = cot(βt).

                              b

               46.   y(x) – λ  [A cot(βx)+ B cot(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.4 with g(x) = cot(βx).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 288
   304   305   306   307   308   309   310   311   312   313   314