Page 311 - Handbook Of Integral Equations
P. 311

4.5-6. A Singular Equation

                             B      2π    t – x
               58.   Ay(x) –        cot       y(t) dt = f(x),  0 ≤ x ≤ 2π.
                             2π  0       2
                     Here the integral is understood in the sense of the Cauchy principal value. Without loss of
                                               2
                                                    2
                     generality we may assume that A + B =1.
                        Solution:
                                                   2π                  2     2π
                                             B           t – x        B
                                y(x)= Af(x)+        cot      f(t) dt +       f(t) dt.
                                             2π          2           2πA
                                                 0                        0
                     •
                       Reference: I. K. Lifanov (1996).
               4.6. Equations Whose Kernels Contain Inverse
                      Trigonometric Functions

                 4.6-1. Kernels Containing Arccosine


                              b
               1.    y(x) – λ  arccos(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = arccos(βx) and h(t)=1.
                                b
               2.    y(x) – λ  arccos(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = arccos(βt).

                              b  arccos(βx)

               3.    y(x) – λ            y(t) dt = f(x).
                             a arccos(βt)
                                                                                    1
                     This is a special case of equation 4.9.1 with g(x) = arccos(βx) and h(t)=  .
                                                                                arccos(βt)
                                b  arccos(βt)
               4.    y(x) – λ            y(t) dt = f(x).
                             a arccos(βx)
                                                                  1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = arccos(βt).
                                                              arccos(βx)
                                b
                                     k
                                               m
               5.    y(x) – λ  arccos (βx) arccos (µt)y(t) dt = f(x).
                             a
                                                                   k
                                                                                      m
                     This is a special case of equation 4.9.1 with g(x) = arccos (βx) and h(t) = arccos (µt).

                              b
                                k
                                       m
               6.    y(x) – λ  t arccos (βx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                   m
                     This is a special case of equation 4.9.1 with g(x) = arccos (βx) and h(t)= t .

                              b
                                       m
                                 k
               7.    y(x) – λ  x arccos (βt)y(t) dt = f(x).
                             a
                                                                              m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = arccos (βt).
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 290
   306   307   308   309   310   311   312   313   314   315   316