Page 315 - Handbook Of Integral Equations
P. 315

4.7. Equations Whose Kernels Contain Combinations of
                      Elementary Functions


                 4.7-1. Kernels Containing Exponential and Hyperbolic Functions

                                b
               1.    y(x) – λ  e µ(x–t)  cosh[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  cosh(βx), h 1 (t)= e –µt  cosh(βt),
                     g 2 (x)= e µx  sinh(βx), and h 2 (t)= –e –µt  sinh(βt).

                              b

               2.    y(x) – λ  e µ(x–t)  sinh[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  sinh(βx), h 1 (t)= e –µt  cosh(βt),
                     g 2 (x)= e µx  cosh(βx), and h 2 (t)= –e –µt  sinh(βt).

                                b
               3.    y(x) – λ  te µ(x–t)  sinh[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  sinh(βx), h 1 (t)= te –µt  cosh(βt),
                     g 2 (x)= e µx  cosh(βx), and h 2 (t)= –te –µt  sinh(βt).


                 4.7-2. Kernels Containing Exponential and Logarithmic Functions

                              b

               4.    y(x) – λ  e µt  ln(βx)y(t) dt = f(x).
                             a
                                                                             µt
                     This is a special case of equation 4.9.1 with g(x) = ln(βx) and h(t)= e .


                              b
               5.    y(x) – λ  e µx  ln(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= e µx  and h(t) = ln(βt).

                                b
               6.    y(x) – λ  e µ(x–t)  ln(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= e µx  ln(βx) and h(t)= e –µt .

                                b
               7.    y(x) – λ  e µ(x–t)  ln(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= e µx  and h(t)= e –µt  ln(βt).

                                b
               8.    y(x) – λ  e µ(x–t) (ln x – ln t)y(t) dt = f(x).
                             a
                                                                                        µx
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  ln x, h 1 (t)= e –µt , g 2 (x)= e , and
                     h 2 (t)= –e –µt  ln t.



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 294
   310   311   312   313   314   315   316   317   318   319   320