Page 320 - Handbook Of Integral Equations
P. 320

b

                                         m
                                  k
               47.   y(x) – λ  cos (βt)ln (µx)y(t) dt = f(x).
                             a
                                                               m                k
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = cos (βt).
                                b
                                  k
                                         m
               48.   y(x) – λ  sin (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                k
                                                                               m
                     This is a special case of equation 4.9.1 with g(x) = sin (βx) and h(t)=ln (µt).
                                b
                                        m
                                  k
               49.   y(x) – λ  sin (βt)ln (µx)y(t) dt = f(x).
                             a
                                                               m
                                                                                k
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = sin (βt).
                                b
                                  k
                                         m
               50.   y(x) – λ  tan (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                                m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = tan (βx) and h(t)=ln (µt).

                              b
                                  k
                                         m
               51.   y(x) – λ  tan (βt)ln (µx)y(t) dt = f(x).
                             a
                                                               m                k
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = tan (βt).
                              b

                                         m
                                  k
               52.   y(x) – λ  cot (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                                m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = cot (βx) and h(t)=ln (µt).
                                b
                                  k
                                        m
               53.   y(x) – λ  cot (βt)ln (µx)y(t) dt = f(x).
                             a
                                                                                k
                                                               m
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = cot (βt).
               4.8. Equations Whose Kernels Contain Special
                      Functions
                 4.8-1. Kernels Containing Bessel Functions

                              b
               1.    y(x) – λ  J ν (βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= J ν (βx) and h(t)=1.
                                b
               2.    y(x) – λ  J ν (βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t)= J ν (βt).

                              ∞
                                                             1
               3.    y(x)+ λ    tJ ν (xt)y(t) dt = f(x),  ν > – .
                                                             2
                             0
                     Solution:
                                         f(x)     λ     ∞
                                   y(x)=      –           tJ ν (xt)f(t) dt,  λ ≠ ±1.
                                         1 – λ 2  1 – λ 2
                                                       0
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 299
   315   316   317   318   319   320   321   322   323   324   325