Page 321 - Handbook Of Integral Equations
P. 321

∞
                                     √
               4.    y(x)+ λ    J ν 2 xt y(t) dt = f(x).
                             0
                                        1
                                           2
                                 1 2
                     By setting x = z , t = τ , y(x)= Y (z), and f(x)= F(z), we arrive at an equation of the
                                 2      2
                     form 4.8.3:

                                                   ∞
                                          Y (z)+ λ   τJ ν (zτ)Y (τ) dτ = F(z).
                                                  0
                              b

               5.    y(x) – λ  [A + B(x – t)J ν (βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t)= J ν (βt).
                                b
               6.    y(x) – λ  [A + B(x – t)J ν (βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x)= J ν (βx).
                                b
               7.    y(x) – λ  [AJ µ (αx)+ BJ ν (βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.5 with g(x)= AJ µ (αx) and h(t)= BJ ν (βt).

                              b
               8.    y(x) – λ  [AJ µ (x)J ν (t)+ BJ ν (x)J µ (t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.17 with g(x)= J µ (x) and h(t)= J ν (t).
                              b

               9.    y(x) – λ  Y ν (βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= Y ν (βx) and h(t)=1.
                              b

               10.   y(x) – λ  Y ν (βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t)= Y ν (βt).
                                b
               11.   y(x) – λ  [A + B(x – t)Y ν (βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t)= Y ν (βt).
                              b

               12.   y(x) – λ  [A + B(x – t)Y ν (βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x)= Y ν (βx).
                              b

               13.   y(x) – λ  [AY µ (αx)+ BY ν (βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.5 with g(x)= AY µ (αx) and h(t)= BY ν (βt).
                                b
               14.   y(x) – λ  [AY µ (x)Y µ (t)+ BY ν (x)Y ν (t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.14 with g(x)= Y µ (x) and h(t)= Y ν (t).

                                b
               15.   y(x) – λ  [AY µ (x)Y ν (t)+ BY ν (x)Y µ (t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.17 with g(x)= Y µ (x) and h(t)= Y ν (t).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 300
   316   317   318   319   320   321   322   323   324   325   326