Page 317 - Handbook Of Integral Equations
P. 317

b

               17.   y(x) – λ  e µ(x–t)  sin[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  sin(βx), h 1 (t)= e –µt  cos(βt),
                     g 2 (x)= e µx  cos(βx), and h 2 (t)= –e –µt  sin(βt).

                                b      n

               18.   y(x) – λ  e µ(x–t)   A k sin[β k (x – t)] y(t) dt = f(x),  n =1, 2, ...
                             a
                                       k=1
                     This is a special case of equation 4.9.20.
                              b

               19.   y(x) – λ  te µ(x–t)  sin[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  sin(βx), h 1 (t)= te –µt  cos(βt),
                     g 2 (x)= e µx  cos(βx), and h 2 (t)= –te –µt  sin(βt).

                                b
               20.   y(x) – λ  xe µ(x–t)  sin[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)= xe µx  sin(βx), h 1 (t)= e –µt  cos(βt),
                     g 2 (x)= xe µx  cos(βx), and h 2 (t)= –e –µt  sin(βt).

                              b

               21.   y(x) – λ  e µt  tan(βx)y(t) dt = f(x).
                             a
                                                                              µt
                     This is a special case of equation 4.9.1 with g(x) = tan(βx) and h(t)= e .
                              b

               22.   y(x) – λ  e µx  tan(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= e µx  and h(t) = tan(βt).
                                b
               23.   y(x) – λ  e µ(x–t) [tan(βx) – tan(βt)]y(t) dt = f(x).
                             a
                                                                                            µx
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  tan(βx), h 1 (t)= e –µt , g 2 (x)= e ,
                     and h 2 (t)= –e –µt  tan(βt).
                              b

               24.   y(x) – λ  e µt  cot(βx)y(t) dt = f(x).
                             a
                                                                              µt
                     This is a special case of equation 4.9.1 with g(x) = cot(βx) and h(t)= e .

                              b
               25.   y(x) – λ  e µx  cot(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= e µx  and h(t) = cot(βt).


                 4.7-4. Kernels Containing Hyperbolic and Logarithmic Functions


                              b
                                          m
                                   k
               26.   y(x) – λ  cosh (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                 k               m
                     This is a special case of equation 4.9.1 with g(x) = cosh (βx) and h(t)=ln (µt).

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 296
   312   313   314   315   316   317   318   319   320   321   322