Page 319 - Handbook Of Integral Equations
P. 319

b
                                   k
                                          m
               37.   y(x) – λ  cosh (βt) sin (µx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = sin (µx) and h(t) = cosh (βt).

                              b
                                   k
                                           m
               38.   y(x) – λ  sinh (βx) cos (µt)y(t) dt = f(x).
                             a
                                                                 k
                                                                                  m
                     This is a special case of equation 4.9.1 with g(x) = sinh (βx) and h(t) = cos (µt).
                              b

                                   k      m
               39.   y(x) – λ  sinh (βt) cos (µx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = cos (µx) and h(t) = sinh (βt).
                              b

                                   k       m
               40.   y(x) – λ  sinh (βx) sin (µt)y(t) dt = f(x).
                             a
                                                                                 m
                                                                 k
                     This is a special case of equation 4.9.1 with g(x) = sinh (βx) and h(t) = sin (µt).
                                b
                                   k
                                          m
               41.   y(x) – λ  sinh (βt) sin (µx)y(t) dt = f(x).
                             a
                                                                m
                                                                                  k
                     This is a special case of equation 4.9.1 with g(x) = sin (µx) and h(t) = sinh (βt).
                                b
                                   k
                                           m
               42.   y(x) – λ  tanh (βx) cos (µt)y(t) dt = f(x).
                             a
                                                                                  m
                                                                 k
                     This is a special case of equation 4.9.1 with g(x) = tanh (βx) and h(t) = cos (µt).
                                b
                                           m
                                   k
               43.   y(x) – λ  tanh (βt) cos (µx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = cos (µx) and h(t) = tanh (βt).
                                b
                                   k
                                           m
               44.   y(x) – λ  tanh (βx) sin (µt)y(t) dt = f(x).
                             a
                                                                 k               m
                     This is a special case of equation 4.9.1 with g(x) = tanh (βx) and h(t) = sin (µt).
                                b
                                   k
                                           m
               45.   y(x) – λ  tanh (βt) sin (µx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = sin (µx) and h(t) = tanh (βt).
                 4.7-6. Kernels Containing Logarithmic and Trigonometric Functions
                              b

                                  k
                                         m
               46.   y(x) – λ  cos (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                                m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = cos (βx) and h(t)=ln (µt).
                 © 1998 by CRC Press LLC







               © 1998 by CRC Press LLC
                                                                                                             Page 298
   314   315   316   317   318   319   320   321   322   323   324