Page 319 - Handbook Of Integral Equations
P. 319
b
k
m
37. y(x) – λ cosh (βt) sin (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 4.9.1 with g(x) = sin (µx) and h(t) = cosh (βt).
b
k
m
38. y(x) – λ sinh (βx) cos (µt)y(t) dt = f(x).
a
k
m
This is a special case of equation 4.9.1 with g(x) = sinh (βx) and h(t) = cos (µt).
b
k m
39. y(x) – λ sinh (βt) cos (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 4.9.1 with g(x) = cos (µx) and h(t) = sinh (βt).
b
k m
40. y(x) – λ sinh (βx) sin (µt)y(t) dt = f(x).
a
m
k
This is a special case of equation 4.9.1 with g(x) = sinh (βx) and h(t) = sin (µt).
b
k
m
41. y(x) – λ sinh (βt) sin (µx)y(t) dt = f(x).
a
m
k
This is a special case of equation 4.9.1 with g(x) = sin (µx) and h(t) = sinh (βt).
b
k
m
42. y(x) – λ tanh (βx) cos (µt)y(t) dt = f(x).
a
m
k
This is a special case of equation 4.9.1 with g(x) = tanh (βx) and h(t) = cos (µt).
b
m
k
43. y(x) – λ tanh (βt) cos (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 4.9.1 with g(x) = cos (µx) and h(t) = tanh (βt).
b
k
m
44. y(x) – λ tanh (βx) sin (µt)y(t) dt = f(x).
a
k m
This is a special case of equation 4.9.1 with g(x) = tanh (βx) and h(t) = sin (µt).
b
k
m
45. y(x) – λ tanh (βt) sin (µx)y(t) dt = f(x).
a
k
m
This is a special case of equation 4.9.1 with g(x) = sin (µx) and h(t) = tanh (βt).
4.7-6. Kernels Containing Logarithmic and Trigonometric Functions
b
k
m
46. y(x) – λ cos (βx)ln (µt)y(t) dt = f(x).
a
m
k
This is a special case of equation 4.9.1 with g(x) = cos (βx) and h(t)=ln (µt).
© 1998 by CRC Press LLC
© 1998 by CRC Press LLC
Page 298