Page 318 - Handbook Of Integral Equations
P. 318

b

                                   k
                                          m
               27.   y(x) – λ  cosh (βt)ln (µx)y(t) dt = f(x).
                             a
                                                               m
                                                                                 k
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = cosh (βt).

                              b
                                   k      m
               28.   y(x) – λ  sinh (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                 k
                                                                                m
                     This is a special case of equation 4.9.1 with g(x) = sinh (βx) and h(t)=ln (µt).
                              b

                                   k
                                         m
               29.   y(x) – λ  sinh (βt)ln (µx)y(t) dt = f(x).
                             a
                                                                                 k
                                                               m
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = sinh (βt).
                                b
                                          m
                                   k
               30.   y(x) – λ  tanh (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                 k               m
                     This is a special case of equation 4.9.1 with g(x) = tanh (βx) and h(t)=ln (µt).
                                b
                                          m
                                   k
               31.   y(x) – λ  tanh (βt)ln (µx)y(t) dt = f(x).
                             a
                                                               m                 k
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = tanh (βt).
                                b
                                   k
                                          m
               32.   y(x) – λ  coth (βx)ln (µt)y(t) dt = f(x).
                             a
                                                                 k
                                                                                 m
                     This is a special case of equation 4.9.1 with g(x) = coth (βx) and h(t)=ln (µt).

                              b
                                   k
                                          m
               33.   y(x) – λ  coth (βt)ln (µx)y(t) dt = f(x).
                             a
                                                               m
                                                                                 k
                     This is a special case of equation 4.9.1 with g(x)=ln (µx) and h(t) = coth (βt).
                 4.7-5. Kernels Containing Hyperbolic and Trigonometric Functions

                              b
                                   k       m
               34.   y(x) – λ  cosh (βx) cos (µt)y(t) dt = f(x).
                             a
                                                                                  m
                                                                 k
                     This is a special case of equation 4.9.1 with g(x) = cosh (βx) and h(t) = cos (µt).
                              b

                                   k
                                           m
               35.   y(x) – λ  cosh (βt) cos (µx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = cos (µx) and h(t) = cosh (βt).
                                b
                                           m
                                   k
               36.   y(x) – λ  cosh (βx) sin (µt)y(t) dt = f(x).
                             a
                                                                 k                m
                     This is a special case of equation 4.9.1 with g(x) = cosh (βx) and h(t) = sin (µt).
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 297
   313   314   315   316   317   318   319   320   321   322   323