Page 313 - Handbook Of Integral Equations
P. 313

4.6-3. Kernels Containing Arctangent


                                b
               19.   y(x) – λ  arctan(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = arctan(βx) and h(t)=1.

                              b

               20.   y(x) – λ  arctan(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = arctan(βt).

                                b
               21.   y(x) – λ  [A arctan(βx)+ B arctan(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.4 with g(x) = arctan(βx).

                              b  arctan(βx)

               22.   y(x) – λ            y(t) dt = f(x).
                             a arctan(βt)
                                                                                   1
                     This is a special case of equation 4.9.1 with g(x) = arctan(βx) and h(t)=  .
                                                                                arctan(βt)

                              b  arctan(βt)

               23.   y(x) – λ            y(t) dt = f(x).
                             a arctan(βx)
                                                                  1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = arctan(βt).
                                                              arctan(βx)
                              b

                                                m
                                     k
               24.   y(x) – λ  arctan (βx) arctan (µt)y(t) dt = f(x).
                             a
                                                                  k
                                                                                     m
                     This is a special case of equation 4.9.1 with g(x) = arctan (βx) and h(t) = arctan (µt).
                              b

                                       m
                                k
               25.   y(x) – λ  t arctan (βx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                  m
                     This is a special case of equation 4.9.1 with g(x) = arctan (βx) and h(t)= t .
                                b
                                       m
                                 k
               26.   y(x) – λ  x arctan (βt)y(t) dt = f(x).
                             a
                                                                              m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = arctan (βt).
                                b
               27.   y(x) – λ  [A + B(x – t) arctan(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = arctan(βt).

                              b
               28.   y(x) – λ  [A + B(x – t) arctan(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = arctan(βx).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 292
   308   309   310   311   312   313   314   315   316   317   318