Page 312 - Handbook Of Integral Equations
P. 312

b
               8.    y(x) – λ  [A + B(x – t) arccos(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = arccos(βx).
                                b
               9.    y(x) – λ  [A + B(x – t) arccos(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = arccos(βt).


                 4.6-2. Kernels Containing Arcsine

                                b
               10.   y(x) – λ  arcsin(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = arcsin(βx) and h(t)=1.
                              b

               11.   y(x) – λ  arcsin(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = arcsin(βt).

                                b  arcsin(βx)
               12.   y(x) – λ            y(t) dt = f(x).
                             a arcsin(βt)
                                                                                   1
                     This is a special case of equation 4.9.1 with g(x) = arcsin(βx) and h(t)=  .
                                                                                arcsin(βt)

                                b  arcsin(βt)
               13.   y(x) – λ            y(t) dt = f(x).
                             a arcsin(βx)
                                                                  1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = arcsin (βt).
                                                              arcsin(βx)

                                b
                                    k
                                               m
               14.   y(x) – λ  arcsin (βx) arcsin (µt)y(t) dt = f(x).
                             a
                                                                  k
                                                                                     m
                     This is a special case of equation 4.9.1 with g(x) = arcsin (βx) and h(t) = arcsin (µt).
                                b
                                k
                                       m
               15.   y(x) – λ  t arcsin (βx)y(t) dt = f(x).
                             a
                                                                  m
                                                                                  k
                     This is a special case of equation 4.9.1 with g(x) = arcsin (βx) and h(t)= t .
                                b
                                 k
                                       m
               16.   y(x) – λ  x arcsin (βt)y(t) dt = f(x).
                             a
                                                               k
                                                                              m
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = arcsin (βt).
                                b
               17.   y(x) – λ  [A + B(x – t) arcsin(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = arcsin(βt).

                              b
               18.   y(x) – λ  [A + B(x – t) arcsin(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = arcsin(βx).

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 291
   307   308   309   310   311   312   313   314   315   316   317