Page 310 - Handbook Of Integral Equations
P. 310

b  cot(βx)

               47.   y(x) – λ          y(t) dt = f(x).
                             a cot(βt)
                                                                                1
                     This is a special case of equation 4.9.1 with g(x) = cot(βx) and h(t)=  .
                                                                             cot(βt)
                                b  cot(βt)
               48.   y(x) – λ          y(t) dt = f(x).
                             a cot(βx)
                                                                 1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = cot(βt).
                                                              cot(βx)
                                b
                                  k
                                          m
               49.   y(x) – λ  cot (βx) cot (µt)y(t) dt = f(x).
                             a
                                                                                m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = cot (βx) and h(t) = cot (µt).
                              b

                                    m
                                k
               50.   y(x) – λ  t cot (βx)y(t) dt = f(x).
                             a
                                                                m
                                                                               k
                     This is a special case of equation 4.9.1 with g(x) = cot (βx) and h(t)= t .
                                b
                                 k
                                     m
               51.   y(x) – λ  x cot (βt)y(t) dt = f(x).
                             a
                                                                           m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = cot (βt).

                              b
               52.   y(x) – λ  [A + B(x – t) cot(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = cot(βt).
                              b

               53.   y(x) – λ  [A + B(x – t) cot(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = cot(βx).
                 4.5-5. Kernels Containing Combinations of Trigonometric Functions
                              b

                                          m
                                  k
               54.   y(x) – λ  cos (βx) sin (µt)y(t) dt = f(x).
                             a
                                                                                 m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = cos (βx) and h(t) = sin (µt).
                                b
               55.   y(x) – λ  [A sin(αx) cos(βt)+ B sin(γx) cos(δt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)=sin(αx), h 1 (t)=A cos(βt), g 2 (x)=sin(γx),
                     and h 2 (t)= B cos(δt).
                                b
                                          m
                                  k
               56.   y(x) – λ  tan (γx) cot (µt)y(t) dt = f(x).
                             a
                                                                k
                                                                                m
                     This is a special case of equation 4.9.1 with g(x) = tan (γx) and h(t) = cot (µt).
                              b

               57.   y(x) – λ  [A tan(αx) cot(βt)+ B tan(γx) cot(δt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)=tan(αx), h 1 (t)=A cot(βt), g 2 (x)=tan(γx),
                     and h 2 (t)= B cot(δt).

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 289
   305   306   307   308   309   310   311   312   313   314   315