Page 314 - Handbook Of Integral Equations
P. 314

4.6-4. Kernels Containing Arccotangent


                                b
               29.   y(x) – λ  arccot(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = arccot(βx) and h(t)=1.

                              b

               30.   y(x) – λ  arccot(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = arccot(βt).

                                b
               31.   y(x) – λ  [A arccot(βx)+ B arccot(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.4 with g(x) = arccot(βx).

                              b  arccot(βx)

               32.   y(x) – λ            y(t) dt = f(x).
                             a arccot(βt)
                                                                                   1
                     This is a special case of equation 4.9.1 with g(x) = arccot(βx) and h(t)=  .
                                                                                arccot(βt)

                              b  arccot(βt)

               33.   y(x) – λ            y(t) dt = f(x).
                             a arccot(βx)
                                                                  1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = arccot(βt).
                                                              arccot(βx)
                              b

                                               m
                                    k
               34.   y(x) – λ  arccot (βx) arccot (µt)y(t) dt = f(x).
                             a
                                                                  k
                                                                                     m
                     This is a special case of equation 4.9.1 with g(x) = arccot (βx) and h(t) = arccot (µt).
                              b

                                       m
                                k
               35.   y(x) – λ  t arccot (βx)y(t) dt = f(x).
                             a
                                                                                  k
                                                                  m
                     This is a special case of equation 4.9.1 with g(x) = arccot (βx) and h(t)= t .
                                b
                                       m
                                 k
               36.   y(x) – λ  x arccot (βt)y(t) dt = f(x).
                             a
                                                                              m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = arccot (βt).
                                b
               37.   y(x) – λ  [A + B(x – t) arccot(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = arccot(βt).

                              b
               38.   y(x) – λ  [A + B(x – t) arccot(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = arccot(βx).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 293
   309   310   311   312   313   314   315   316   317   318   319