Page 316 - Handbook Of Integral Equations
P. 316

2
                           b – a 2      ∞  1        x

               9.    y(x)+              exp –a ln    y(t) dt = f(x).
                             2a   0   t           t
                     Solution with a >0, b > 0, and x >0:
                                                 2
                                                a – b 2     ∞  1         x
                                    y(x)= f(x)+             exp –b ln    f(t) dt.
                                                  2b       t         t
                                                       0
                     •
                       Reference: F. D. Gakhov and Yu. I. Cherskii (1978).

                 4.7-3. Kernels Containing Exponential and Trigonometric Functions

                              b

               10.   y(x) – λ  e µt  cos(βx)y(t) dt = f(x).
                             a
                                                                              µt
                     This is a special case of equation 4.9.1 with g(x) = cos(βx) and h(t)= e .
                                b
               11.   y(x) – λ  e µx  cos(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= e µx  and h(t) = cos(βt).


                              ∞
               12.   y(x) – λ   e µ(x–t)  cos(xt)y(t) dt = f(x).
                             0
                     Solution:
                                                      ∞
                                    f(x)      λ         µ(x–t)
                            y(x)=     π   +    π       e    cos(xt)f(t) dt,  λ ≠ ± 2/π.
                                  1 –  λ 2  1 –  λ 2
                                      2        2    0
                                b
               13.   y(x) – λ  e µ(x–t)  cos[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.18 with g 1 (x)= e µx  cos(βx), h 1 (t)= e –µt  cos(βt),
                     g 2 (x)= e µx  sin(βx), and h 2 (t)= e –µt  sin(βt).

                              b

               14.   y(x) – λ  e µt  sin(βx)y(t) dt = f(x).
                             a
                                                                              µt
                     This is a special case of equation 4.9.1 with g(x) = sin(βx) and h(t)= e .
                                b
               15.   y(x) – λ  e µx  sin(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= e µx  and h(t) = sin(βt).


                              ∞
               16.   y(x) – λ   e µ(x–t)  sin(xt)y(t) dt = f(x).
                             0
                     Solution:
                                                      ∞
                                    f(x)      λ         µ(x–t)
                            y(x)=     π   +    π       e    sin(xt)f(t) dt,  λ ≠ ± 2/π.
                                  1 –  λ 2  1 –  λ 2
                                      2        2    0


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 295
   311   312   313   314   315   316   317   318   319   320   321