Page 307 - Handbook Of Integral Equations
P. 307

2
                     2 .For λ(2A + λ)= –k < 0, the general solution of equation (1) is given by
                      ◦
                                                               2Aλ     x
                            y(x)= C 1 cosh(kx)+ C 2 sinh(kx)+ f(x) –  sinh[k(x – t)] f(t) dt,  (3)
                                                                k   a

                     where C 1 and C 2 are arbitrary constants.
                                       2
                        For λ(2A + λ)= k > 0, the general solution of equation (1) is given by
                                                                     x
                                                              2Aλ
                             y(x)= C 1 cos(kx)+ C 2 sin(kx)+ f(x) –   sin[k(x – t)] f(t) dt.  (4)
                                                               k    a
                        For λ =2A, the general solution of equation (1) is given by


                                                                 x
                                      y(x)= C 1 + C 2 x + f(x)+4A 2  (x – t)f(t) dt.        (5)
                                                                a
                        The constants C 1 and C 2 in solutions (3)–(5) are determined by conditions (2).


                              b
               30.   y(x)+ A    t sin(λ|x – t|)y(t) dt = f(x).
                              a
                     This is a special case of equation 4.9.39 with g(t)= At. The solution of the integral equation
                     can be written via the Bessel functions (or modified Bessel functions) of order 1/3.

                                b
                                  3
               31.   y(x)+ A    sin (λ|x – t|)y(t) dt = f(x).
                              a
                                      3
                                            1
                     Using the formula sin β = – sin 3β +  3  sin β, we arrive at an equation of the form 4.5.32
                                            4        4
                     with n =2:
                                         b

                                           1
                                                          3
                                y(x)+    – A sin(3λ|x – t|)+ A sin(λ|x – t|) y(t) dt = f(x).
                                           4              4
                                       a
                                n
                             b
               32.   y(x)+        A k sin(λ k |x – t|) y(t) dt = f(x),  –∞ < a < b < ∞.
                            a
                               k=1
                      ◦
                     1 . Let us remove the modulus in the kth summand of the integrand:
                                b                   x                     b
                      I k (x)=  sin(λ k |x – t|)y(t) dt =  sin[λ k (x – t)]y(t) dt +  sin[λ k (t – x)]y(t) dt. (1)
                              a                    a                    x
                     Differentiating (1) with respect to x twice yields
                                     x                       b


                            I = λ k   cos[λ k (x – t)]y(t) dt – λ k  cos[λ k (t – x)]y(t) dt,
                             k
                                    a                       x
                                             x                       b
                                                                                            (2)

                            I =2λ k y(x) – λ 2 k  sin[λ k (x – t)]y(t) dt – λ 2 k  sin[λ k (t – x)]y(t) dt,
                             k
                                             a                      x
                     where the primes denote the derivatives with respect to x. By comparing formulas (1) and (2),
                     we find the relation between I and I k :

                                             k
                                                        2

                                          I =2λ k y(x) – λ I k ,  I k = I k (x).            (3)
                                                        k
                                           k
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 286
   302   303   304   305   306   307   308   309   310   311   312