Page 302 - Handbook Of Integral Equations
P. 302

b
                                        m
                                 k
               6.    y(x) – λ  ln (γx)ln (µt)y(t) dt = f(x).
                             a
                                                                               m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)=ln (γx) and h(t)=ln (µt).
                 4.4-2. Kernels Containing Power-Law and Logarithmic Functions

                                b
                                k
                                   m
               7.    y(x) – λ  t ln (γx)y(t) dt = f(x).
                             a
                                                                              k
                                                               m
                     This is a special case of equation 4.9.1 with g(x)=ln (γx) and h(t)= t .
                                b
                                 k
                                    m
               8.    y(x) – λ  x ln (γt)y(t) dt = f(x).
                             a
                                                                           m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t)=ln (γt).

                              b
               9.    y(x) – λ  [A + B(x – t) ln(γt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = ln(γt).
                              b

               10.   y(x) – λ  [A + B(x – t) ln(γx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = ln(γx).

                                b
               11.   y(x) – λ  [A +(Bx + Ct) ln(γt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.9 with h(t) = ln(γt).

                                b
               12.   y(x) – λ  [A +(Bx + Ct) ln(γx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.11 with h(x) = ln(γx).
                                b
                                  n
                                     m
                                                k
                                                    l
               13.   y(x) – λ  [At ln (βx)+ Bx ln (γt)]y(t) dt = f(x).
                             a
                                                                                         k
                                                                 m
                                                                                n
                     This is a special case of equation 4.9.18 with g 1 (x)=ln (βx), h 1 (t)= At , g 2 (x)= x , and
                              l
                     h 2 (t)= B ln (γt).
               4.5. Equations Whose Kernels Contain Trigonometric
                      Functions
                 4.5-1. Kernels Containing Cosine

                                b
               1.    y(x) – λ  cos(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = cos(βx) and h(t)=1.




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 281
   297   298   299   300   301   302   303   304   305   306   307