Page 304 - Handbook Of Integral Equations
P. 304

∞
               6.    y(x) – λ   cos(xt)y(t) dt = f(x).
                             0
                     Solution:
                                                                ∞
                                              f(x)      λ
                                      y(x)=     π   +    π       cos(xt)f(t) dt,
                                            1 –  λ 2  1 –  λ 2
                                                2        2    0

                     where λ ≠ ± 2/π.
                     •
                       Reference: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971).
                                 n
                              b

               7.    y(x) – λ       A k cos[β k (x – t)] y(t) dt = f(x),  n =1, 2, ...
                             a
                                 k=1
                     This equation can be reduced to a special case of equation 4.9.20; the formula cos[β(x – t)] =
                     cos(βx) cos(βt) + sin(βx) sin(βt) must be used.

                                b  cos(βx)
               8.    y(x) – λ          y(t) dt = f(x).
                             a cos(βt)
                                                                                1
                     This is a special case of equation 4.9.1 with g(x) = cos(βx) and h(t)=  .
                                                                              cos(βt)
                              b  cos(βt)

               9.    y(x) – λ          y(t) dt = f(x).
                             a cos(βx)
                                                                 1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = cos(βt).
                                                              cos(βx)
                              b

                                          m
                                  k
               10.   y(x) – λ  cos (βx) cos (µt)y(t) dt = f(x).
                             a
                                                                                 m
                                                                k
                     This is a special case of equation 4.9.1 with g(x) = cos (βx) and h(t) = cos (µt).
                                b
                                k
                                    m
               11.   y(x) – λ  t cos (βx)y(t) dt = f(x).
                             a
                                                                               k
                                                                m
                     This is a special case of equation 4.9.1 with g(x) = cos (βx) and h(t)= t .
                                b
                                     m
                                 k
               12.   y(x) – λ  x cos (βt)y(t) dt = f(x).
                             a
                                                                            m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = cos (βt).
                              b

               13.   y(x) – λ  [A + B(x – t) cos(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = cos(βx).
                                b
               14.   y(x) – λ  [A + B(x – t) cos(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = cos(βt).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 283
   299   300   301   302   303   304   305   306   307   308   309