Page 299 - Handbook Of Integral Equations
P. 299

4.3-3. Kernels Containing Hyperbolic Tangent


                                b
               30.   y(x) – λ  tanh(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = tanh(βx) and h(t)=1.

                              b

               31.   y(x) – λ  tanh(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = tanh(βt).

                                b
               32.   y(x) – λ  [A tanh(βx)+ B tanh(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.4 with g(x) = tanh(βx).

                              b  tanh(βx)

               33.   y(x) – λ           y(t) dt = f(x).
                             a tanh(βt)
                                                                                 1
                     This is a special case of equation 4.9.1 with g(x) = tanh(βx) and h(t)=  .
                                                                              tanh(βt)

                              b  tanh(βt)

               34.   y(x) – λ           y(t) dt = f(x).
                             a tanh(βx)
                                                                 1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = tanh(βt).
                                                              tanh(βx)
                              b

                                            m
                                   k
               35.   y(x) – λ  tanh (βx) tanh (µt)y(t) dt = f(x).
                             a
                                                                 k
                                                                                  m
                     This is a special case of equation 4.9.1 with g(x) = tanh (βx) and h(t) = tanh (µt).
                                b
                                     m
                                k
               36.   y(x) – λ  t tanh (βx)y(t) dt = f(x).
                             a
                                                                                k
                                                                 m
                     This is a special case of equation 4.9.1 with g(x) = tanh (βx) and h(t)= t .
                                b
                                 k
                                      m
               37.   y(x) – λ  x tanh (βt)y(t) dt = f(x).
                             a
                                                                            m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = tanh (βt).
                                b
               38.   y(x) – λ  [A + B(x – t) tanh(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = tanh(βt).

                              b
               39.   y(x) – λ  [A + B(x – t) tanh(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = tanh(βx).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 278
   294   295   296   297   298   299   300   301   302   303   304