Page 300 - Handbook Of Integral Equations
P. 300

4.3-4. Kernels Containing Hyperbolic Cotangent


                                b
               40.   y(x) – λ  coth(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = coth(βx) and h(t)=1.

                              b

               41.   y(x) – λ  coth(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = coth(βt).

                                b
               42.   y(x) – λ  [A coth(βx)+ B coth(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.4 with g(x) = coth(βx).

                              b  coth(βx)

               43.   y(x) – λ           y(t) dt = f(x).
                             a coth(βt)
                                                                                 1
                     This is a special case of equation 4.9.1 with g(x) = coth(βx) and h(t)=  .
                                                                              coth(βt)

                              b  coth(βt)

               44.   y(x) – λ           y(t) dt = f(x).
                             a coth(βx)
                                                                 1
                     This is a special case of equation 4.9.1 with g(x)=  and h(t) = coth(βt).
                                                              coth(βx)
                              b

                                            m
                                   k
               45.   y(x) – λ  coth (βx) coth (µt)y(t) dt = f(x).
                             a
                                                                 k
                                                                                  m
                     This is a special case of equation 4.9.1 with g(x) = coth (βx) and h(t) = coth (µt).
                                b
                                     m
                                k
               46.   y(x) – λ  t coth (βx)y(t) dt = f(x).
                             a
                                                                                k
                                                                 m
                     This is a special case of equation 4.9.1 with g(x) = coth (βx) and h(t)= t .
                                b
                                 k
                                      m
               47.   y(x) – λ  x coth (βt)y(t) dt = f(x).
                             a
                                                                            m
                                                               k
                     This is a special case of equation 4.9.1 with g(x)= x and h(t) = coth (βt).
                                b
               48.   y(x) – λ  [A + B(x – t) coth(βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t) = coth(βt).

                              b
               49.   y(x) – λ  [A + B(x – t) coth(βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x) = coth(βx).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 279
   295   296   297   298   299   300   301   302   303   304   305