Page 305 - Handbook Of Integral Equations
P. 305

4.5-2. Kernels Containing Sine

                                b
               15.   y(x) – λ  sin(βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = sin(βx) and h(t)=1.
                                b
               16.   y(x) – λ  sin(βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t) = sin(βt).

                                b
               17.   y(x) – λ  sin[β(x – t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.16 with g(x) = sin(βx) and h(t) = cos(βt).
                        Solution:

                                        y(x)= f(x)+ λ A 1 sin(βx)+ A 2 cos(βx) ,
                     where A 1 and A 2 are the constants determined by the formulas presented in 4.9.16.

                              b
               18.   y(x) – λ  sin[β(x + t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.15 with g(x) = sin(βx) and h(t) = cos(βt).
                        Solution:

                                        y(x)= f(x)+ λ A 1 sin(βx)+ A 2 cos(βx) ,
                     where A 1 and A 2 are the constants determined by the formulas presented in 4.9.15.

                              ∞
               19.   y(x) – λ   sin(xt)y(t) dt =0.
                             0

                     Characteristic values: λ = ± 2/π. For the characteristic values, the integral equation has
                     infinitely many linearly independent eigenfunctions.

                        Eigenfunctions for λ =+ 2/π have the form


                                                        2   ∞
                                         y + (x)= f(x)+       f(t) sin(xt) dt,
                                                        π  0
                     where f = f(x) is any continuous function absolutely integrable on the interval [0, ∞).

                        Eigenfunctions for λ = – 2/π have the form

                                                        2   ∞
                                          y – (x)= f(x) –     f(t) sin(xt) dt,
                                                        π  0
                     where f = f(x) is any continuous function absolutely integrable on the interval [0, ∞).
                     •
                       Reference: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971).

                              ∞
               20.   y(x) – λ   sin(xt)y(t) dt = f(x).
                             0
                     Solution:
                                              f(x)       λ     ∞
                                       y(x)=    π   +    π       sin(xt)f(t) dt,
                                             1 –  λ 2  1 –  λ 2
                                                2        2    0

                     where λ ≠ ± 2/π.
                     •
                       References: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971), F. D. Gakhov and Yu. I. Cherskii (1978).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 284
   300   301   302   303   304   305   306   307   308   309   310