Page 322 - Handbook Of Integral Equations
P. 322

4.8-2. Kernels Containing Modified Bessel Functions

                              b

               16.   y(x)– λ   I ν (βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= I ν (βx) and h(t)=1.


                              b
               17.   y(x)– λ   I ν (βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t)= I ν (βt).

                              b

               18.   y(x)– λ   [A + B(x – t)I ν (βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t)= I ν (βt).

                                b
               19.   y(x)– λ   [A + B(x – t)I ν (βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x)= I ν (βx).

                                b
               20.   y(x)– λ   [AI µ (αx)+ BI ν (βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.5 with g(x)= AI µ (αx) and h(t)= BI ν (βt).

                              b
               21.   y(x)– λ   [AI µ (x)I µ (t)+ BI ν (x)I ν (t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.14 with g(x)= I µ (x) and h(t)= I ν (t).


                              b
               22.   y(x)– λ   [AI µ (x)I ν (t)+ BI ν (x)I µ (t)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.17 with g(x)= I µ (x) and h(t)= I ν (t).

                                b
               23.   y(x)– λ   K ν (βx)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x)= K ν (βx) and h(t)=1.

                                b
               24.   y(x)– λ   K ν (βt)y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.1 with g(x) = 1 and h(t)= K ν (βt).


                              b
               25.   y(x)– λ   [A + B(x – t)K ν (βt)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.8 with h(t)= K ν (βt).

                              b
               26.   y(x)– λ   [A + B(x – t)K ν (βx)]y(t) dt = f(x).
                             a
                     This is a special case of equation 4.9.10 with h(x)= K ν (βx).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 301
   317   318   319   320   321   322   323   324   325   326   327