Page 322 - Handbook Of Integral Equations
P. 322
4.8-2. Kernels Containing Modified Bessel Functions
b
16. y(x)– λ I ν (βx)y(t) dt = f(x).
a
This is a special case of equation 4.9.1 with g(x)= I ν (βx) and h(t)=1.
b
17. y(x)– λ I ν (βt)y(t) dt = f(x).
a
This is a special case of equation 4.9.1 with g(x) = 1 and h(t)= I ν (βt).
b
18. y(x)– λ [A + B(x – t)I ν (βt)]y(t) dt = f(x).
a
This is a special case of equation 4.9.8 with h(t)= I ν (βt).
b
19. y(x)– λ [A + B(x – t)I ν (βx)]y(t) dt = f(x).
a
This is a special case of equation 4.9.10 with h(x)= I ν (βx).
b
20. y(x)– λ [AI µ (αx)+ BI ν (βt)]y(t) dt = f(x).
a
This is a special case of equation 4.9.5 with g(x)= AI µ (αx) and h(t)= BI ν (βt).
b
21. y(x)– λ [AI µ (x)I µ (t)+ BI ν (x)I ν (t)]y(t) dt = f(x).
a
This is a special case of equation 4.9.14 with g(x)= I µ (x) and h(t)= I ν (t).
b
22. y(x)– λ [AI µ (x)I ν (t)+ BI ν (x)I µ (t)]y(t) dt = f(x).
a
This is a special case of equation 4.9.17 with g(x)= I µ (x) and h(t)= I ν (t).
b
23. y(x)– λ K ν (βx)y(t) dt = f(x).
a
This is a special case of equation 4.9.1 with g(x)= K ν (βx) and h(t)=1.
b
24. y(x)– λ K ν (βt)y(t) dt = f(x).
a
This is a special case of equation 4.9.1 with g(x) = 1 and h(t)= K ν (βt).
b
25. y(x)– λ [A + B(x – t)K ν (βt)]y(t) dt = f(x).
a
This is a special case of equation 4.9.8 with h(t)= K ν (βt).
b
26. y(x)– λ [A + B(x – t)K ν (βx)]y(t) dt = f(x).
a
This is a special case of equation 4.9.10 with h(x)= K ν (βx).
© 1998 by CRC Press LLC
© 1998 by CRC Press LLC
Page 301