Page 347 - Handbook Of Integral Equations
P. 347

For equations 4.9.41–4.9.46, only particular solutions are given. To obtain the general solution,
               one must add the particular solution to the general solution of the corresponding homogeneous
               equation 4.9.40.


                             b
               41.   y(x)+    f(t)y(x – t) dt = Ax + B.
                            a
                     A solution:
                                                  y(x)= px + q,
                     where the coefficients p and q are given by
                                                                   b              b
                               A           AI 1     B
                          p =      ,  q =      2  +    ,    I 0 =  f(t) dt,  I 1 =  tf(t) dt.
                              1+ I 0     (1 + I 0 )  1+ I 0      a              a

                             b
               42.   y(x)+    f(t)y(x – t) dt = Ae λx .
                            a
                     A solution:
                                            A  λx               b
                                      y(x)=   e ,     B =1 +    f(t) exp(–λt) dt.
                                            B                 a
                     The general solution of the integral equation is the sum of the specified particular solution
                     and the general solution of the homogeneous equation 4.9.40.

                             b

               43.   y(x)+    f(t)y(x – t) dt = A sin(λx).
                            a
                     A solution:
                                                AI c           AI s
                                         y(x)=       sin(λx)+       cos(λx),
                                               I + I 2       I + I 2
                                                2
                                                              2
                                               c   s          c   s
                     where the coefficients I c and I s are given by

                                             b                    b
                                    I c =1 +  f(t) cos(λt) dt,  I s =  f(t) sin(λt) dt.
                                            a                    a
                             b

               44.   y(x)+    f(t)y(x – t) dt = A cos(λx).
                            a
                     A solution:
                                                AI s           AI c
                                        y(x)= –      sin(λx)+       cos(λx),
                                               I + I  2       I + I  2
                                                2
                                                               2
                                                c   s          c  s
                     where the coefficients I c and I s are given by
                                             b                    b

                                    I c =1 +  f(t) cos(λt) dt,  I s =  f(t) sin(λt) dt.
                                            a                    a

                             b
               45.   y(x)+    f(t)y(x – t) dt = e µx (A sin λx + B cos λx).
                            a
                     A solution:
                                                   µx
                                             y(x)= e (p sin λx + q cos λx),
                     where the coefficients p and q are given by
                                              AI c – BI s      AI s + BI c
                                           p =         ,    q =         ,
                                                 2
                                                                 2
                                                I + I 2         I + I 2
                                                c   s            c   s

                                          b                       b
                                 I c =1 +  f(t)e –µt  cos(λt) dt,  I s =  f(t)e –µt  sin(λt) dt.
                                         a                       a
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 326
   342   343   344   345   346   347   348   349   350   351   352