Page 343 - Handbook Of Integral Equations
P. 343

∞  1     x
                                                  b
               34.   y(x) –      K     y(t) dt = Ax .
                            0  t    t
                     A solution:
                                                               ∞
                                                                    1
                                             A  b                      b–1
                                       y(x)=   x ,    B =1 –    K     ξ   dξ.
                                             B               0      ξ
                     It is assumed that the improper integral is convergent and B ≠ 0. The general solution of
                     the integral equations is the sum of the above solution and the solution of the homogeneous
                     equation 4.9.33.

                             ∞  1     x
               35.   y(x) –      K     y(t) dt = f(x).
                            0  t    t
                     The solution can be obtained with the aid of the inverse Mellin transform:

                                                        c+i∞
                                                  1          f(s)   –s

                                           y(x)=                  x ds,
                                                 2πi  c–i∞ 1 – K(s)

                     where f and K stand for the Mellin transforms of the right-hand side and the kernel of the


                     integral equation,

                                            ∞                     ∞
                                    f(s)=     f(x)x s–1  dx,  K(s)=  K(x)x s–1  dx.


                                           0                     0
                        Example. For f(x)= Ae –λx  and K(x)=  1 –x
                                                     e , the solution of the integral equation has the form
                                                    2
                                               
                                                    4A
                                                                for λx >1,
                                               
                                                        3
                                                (3 – 2C)(λx)
                                          y(x)=     ∞
                                                           1
                                                –2A             for λx <1.
                                               
                                               
                                                          s
                                                      (λx) k ψ(s k )
                                                    k=1
                     Here C = 0.5772 ... is the Euler constant, ψ(z) = [ln Γ(z)] z is the logarithmic derivative of the gamma function,

                     and the s k are the negative roots of the transcendental equation Γ(s k ) = 2, where Γ(z) is the gamma function.
                     •
                       Reference: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971).
                               b
               36.   y(x)+    |x – t|g(t)y(t) dt = f(x),  a ≤ x ≤ b.
                            a
                     1 . Let us remove the modulus in the integrand,
                      ◦
                                           x                 b
                                  y(x)+    (x – t)g(t)y(t) dt +  (t – x)g(t)y(t) dt = f(x).  (1)
                                         a                 x
                     Differentiating (1) with respect to x yields

                                               x            b


                                      y (x)+    g(t)y(t) dt –  g(t)y(t) dt = f (x).         (2)
                                       x
                                                                         x
                                              a            x
                     Differentiating (2), we arrive at a second-order ordinary differential equation for y = y(x),

                                                y     +2g(x)y = f (x).                      (3)
                                                 xx
                                                              xx
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 322
   338   339   340   341   342   343   344   345   346   347   348