Page 339 - Handbook Of Integral Equations
P. 339

∞
               22.   y(x)+     K(x – t)y(t) dt = Ae λx .
                            –∞
                     Solution:
                                               A   λx          ∞      –λx
                                       y(x)=      e ,    q =     K(x)e   dx.
                                             1+ q
                                                              –∞

                             ∞
               23.   y(x)+     K(x – t)y(t) dt = A cos(λx)+ B sin(λx).
                            –∞
                     Solution:
                                            AI c + BI s       BI c – AI s
                                      y(x)=          cos(λx)+         sin(λx),
                                              2
                                                                2
                                             I + I 2           I + I 2
                                              c   s             c   s

                                          ∞                       ∞
                                  I c =1 +  K(z) cos(λz) dz,  I s =  K(z) sin(λz) dz.
                                          –∞                     –∞

                             ∞
               24.   y(x) –    K(x – t)y(t) dt = f(x).
                            –∞
                     Here –∞ < x < ∞, f(x) ∈ L 1 (–∞, ∞), and K(x) ∈ L 1 (–∞, ∞).
                        For the integral equation to be solvable (in L 1 ), it is necessary and sufficient that
                                             √
                                          1 –  2π K(u) ≠ 0,   –∞ < u < ∞,                   (1)


                                       ∞
                                   1          –iux
                     where K(u)= √       K(x)e    dx is the Fourier transform of K(x). In this case, the

                                   2π
                                      –∞
                     equation has a unique solution, which is given by

                                                         ∞
                                            y(x)= f(x)+    R(x – t)f(t) dt,
                                                        –∞

                                         1    ∞      iux                 K(u)

                                 R(x)= √        R(u)e   du,    R(u)=    √        .


                                         2π  –∞                       1 –  2π K(u)

                     •
                       Reference: V. A. Ditkin and A. P. Prudnikov (1965).

                             ∞
               25.   y(x) –    K(x – t)y(t) dt = f(x).
                            0
                     The Wiener–Hopf equation of the second kind.*
                        Here 0 ≤ x < ∞, K(x) ∈ L 1 (–∞, ∞), f(x) ∈ L 1 (0, ∞), and y(x) ∈ L 1 (0, ∞).
                        For the integral equation to be solvable, it is necessary and sufficient that
                                                   ˇ
                                         Ω(u)=1 – K(u) ≠ 0,   –∞ < u < ∞,                   (1)
                                   ∞
                           ˇ
                     where K(u)=    K(x)e iux  dx is the Fourier transform (in the asymmetric form) of K(x).
                                 –∞
                     In this case, the index of the equation can be introduced,
                                                          1 
         ∞
                                           ν = –ind Ω(u)= –  arg Ω(u)  .
                                                          2π         –∞
                     1 . Solution with ν =0:
                      ◦

                                                         ∞
                                            y(x)= f(x)+    R(x, t)f(t) dt,
                                                         0
                 * A comprehensive discussion of this equation is given in Subsection 11.9-1, Section 11.10, and Section 11.11.
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 318
   334   335   336   337   338   339   340   341   342   343   344