Page 342 - Handbook Of Integral Equations
P. 342

∞
                                     β
               31.   y(x) –    K(xt)t y(t) dt = f(x).
                            0
                     The solution can be obtained with the aid of the inverse Mellin transform as follows:
                                            1     c+i∞                    –s
                                                     f(s)+ K(s)f(1 + β – s)
                                     y(x)=                               x ds,
                                           2πi        1 – K(s)K(1 + β – s)


                                                c–i∞
                     where f and K stand for the Mellin transforms of the right-hand side and of the kernel of the


                     integral equation,

                                            ∞                     ∞
                                    f(s)=     f(x)x s–1  dx,  K(s)=  K(x)x s–1  dx.


                                           0                     0

                             ∞
                                     λ µ
               32.   y(x) –    g(xt)x t y(t) dt = f(x).
                            0
                                                                                      λ
                     This equation can be rewritten in the form of equation 4.9.31 by setting K(z)= z g(z) and
                     β = µ – λ.

                             ∞  1     x
               33.   y(x) –      K     y(t) dt =0.
                            0  t    t
                     Eigenfunctions of this integral equation are determined by the roots of the following tran-
                     scendental (algebraic) equation for the parameter λ:

                                                  ∞
                                                       1
                                                    K     z λ–1  dz = 1.                    (1)
                                                       z
                                                 0
                     1 . For a real simple root λ n of equation (1), there is a corresponding eigenfunction
                      ◦
                                                    y n (x)= x λ n .
                     2 . For a real root λ n of multiplicity r, there are corresponding r eigenfunctions
                      ◦
                               y n1 (x)= x λ n ,  y n2 (x)= x λ n  ln x,  ... ,  y nr (x)= x λ n  ln r–1  x.


                     3 . For a complex simple root λ n = α n + iβ n of equation (1), there is a corresponding pair
                      ◦
                     of eigenfunctions
                                    (1)
                                                            (2)
                                   y (x)= x α n  cos(β n ln x),  y (x)= x α n  sin(β n ln x).
                                    n                       n
                      ◦
                     4 . For a complex root λ n =α n +iβ n of multiplicity r, there are corresponding r eigenfunction
                     pairs
                                                            (2)
                               (1)
                             y (x)= x α n  cos(β n ln x),  y (x)= x α n  sin(β n ln x),
                              n1                            n1
                               (1)
                                                            (2)
                             y (x)= x α n  ln x cos(β n ln x),  y (x)= x α n  ln x sin(β n ln x),
                              n2                            n2
                              ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅   ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
                                                            (2)
                               (1)
                             y (x)= x α n  ln r–1  x cos(β n ln x),  y (x)= x α n  ln r–1  x sin(β n ln x).
                                                            nr
                              nr
                        The general solution is the linear combination (with arbitrary constants) of the eigenfunc-
                     tions of the homogeneous integral equation.
                 © 1998 by CRC Press LLC








               © 1998 by CRC Press LLC
                                                                                                             Page 321
   337   338   339   340   341   342   343   344   345   346   347