Page 340 - Handbook Of Integral Equations
P. 340

where

                                                              ∞
                                 R(x, t)= R + (x – t)+ R – (t – x)+  R + (x – s)R – (t – s) ds,
                                                             0
                     and the functions R + (x) and R – (x) satisfy the conditions R + (x) = 0 and R – (x) = 0 for x <0
                     and are uniquely defined by their Fourier transforms as follows:

                                    ∞                    1          1   ∞  ln Ω(t)
                               1+     R ± (t)e ±iut  dt =exp –  ln Ω(u) ∓        dt .
                                   0                     2         2πi  –∞  t – u
                        Alternatively, R + (x) and R – (x) can be obtained by constructing the solutions of the
                     equations

                                            ∞
                                   R + (x)+   K(x – t)R + (t) dt = K(x),  0 ≤ x ≤ ∞,
                                           0

                                            ∞
                                   R – (x)+   K(t – x)R – (t) dt = K(–x),  0 ≤ x ≤ ∞.
                                           0
                     2 . Solution with ν >0:
                      ◦
                                        ν                               ν
                                               m–1 –x   ∞                     m–1 –t
                                                            ◦
                            y(x)= f(x)+    C m x  e  +    R (x, t) f(t)+  C m t  e   dt,
                                       m=1             0               m=1
                     where the C m are arbitrary constants,

                                                              ∞
                                         (0)
                                                    (1)
                                                                  (0)
                                                                           (1)
                                 ◦
                               R (x, t)= R (x – t)+ R (t – x)+   R (x – s)R (t – s) ds,
                                                                  +
                                                                          –
                                                    –
                                         +
                                                              0
                                    (0)       (1)
                     and the functions R + (x) and R (x) are uniquely defined by their Fourier transforms:
                                              –
                                                            ν

                                     ∞                 u – i        ∞
                                        (1)
                                                                       (0)
                                1+     R (t)e ±iut  dt =       1+     R (t)e ±iut  dt ,
                                        ±                              ±
                                    0                  u + i       0

                                   ∞                    1           1    ∞  ln Ω (t)
                                                                              ◦
                                      (0)  ±iut
                              1+     R (t)e    dt =exp –  ln Ω (u) ∓              dt ,
                                                             ◦
                                      ±
                                  0                     2          2πi  –∞  t – u
                                                                    ν
                                                        ν
                                               ◦
                                              Ω (u)(u + i) = Ω(u)(u – i) .
                     3 .For ν < 0, the solution exists only if the conditions
                      ◦

                                         ∞
                                           f(x)ψ m (x) dx =0,  m =1, 2, ... , –ν,
                                        0
                     are satisfied. Here ψ 1 (x), ... , ψ ν (x) is the system of linearly independent solutions of the
                     transposed homogeneous equation

                                                    ∞
                                             ψ(x) –   K(t – x)ψ(t) dt =0.
                                                   0
                     Then
                                                         ∞
                                            y(x)= f(x)+    R (x, t)f(t) dt,
                                                             ∗
                                                        0
                     where

                                                              ∞
                                                                           (0)
                                                                  (1)
                                                    (0)
                                         (1)
                                 ∗
                               R (x, t)= R (x – t)+ R (t – x)+   R (x – s)R (t – s) ds,
                                         +          –             +       –
                                                              0
                                     (1)      (0)
                                                                           ◦
                     and the functions R + (x) and R (x) are uniquely defined in item 2 by their Fourier trans-
                                              –
                     forms.
                     •
                       References: V. I. Smirnov (1974), F. D. Gakhov and Yu. I. Cherskii (1978), I. M. Vinogradov (1979).
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 319
   335   336   337   338   339   340   341   342   343   344   345