Page 338 - Handbook Of Integral Equations
P. 338

n
                              b
               20.   y(x) – λ      g k (x)h k (t) y(t) dt = f(x),  n =2, 3, ...
                             a
                                k=1
                     The characteristic values of the integral equation (counting the multiplicity, we have exactly
                     n of them) are the roots of the algebraic equation
                                                      ∆(λ)=0,
                     where
                                                                     –1
                               1 – λs 11  –λs 12  ···  –λs 1n      s 11 – λ  s 12  ···  s 1n
                                                                             –1
                               –λs 21  1 – λs 22 ···  –λs 2n       s 21  s 22 – λ  ···  s 2n
                       ∆(λ)=     .      .    .     .      =(–λ) n    .     .    .     .       ,
                                 . .    . .   . .  . .             . .     . .   .  .  . .

                                                                                         –1
                               –λs n1  –λs n2 ··· 1 – λs nn       s n1    s n2  ··· s nn – λ
                     and the integrals
                                              b

                                      s mk =   h m (x)g k (x) dx;  m, k =1, ... , n,
                                             a
                     are assumed to be convergent.
                        Solution with regular λ:
                                                            n

                                              y(x)= f(x)+ λ   A k g k (x),
                                                           k=1
                     where the constants A k form the solution of the following system of algebraic equations:
                                    n                        b

                             A m – λ  s mk A k = f m ,  f m =  f(x)h m (x) dx,  m =1, ... , n.
                                                           a
                                   k=1
                        The A k can be calculated by Cramer’s rule:
                                                  A k = ∆ k (λ)/∆(λ),
                     where

                                       1 – λs 11  ···  –λs 1k–1  f 1  –λs 1k+1  ···  –λs 1n

                                       –λs 21  ···  –λs 2k–1  f 2  –λs 2k+1  ···  –λs 2n
                              ∆ k (λ)=                                               .
                                       ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

                                       –λs n1  ··· –λs nk–1  f n  –λs nk+1  ··· 1 – λs nn
                        For solutions of the equation in the case in which λ is a characteristic value, see Subsec-
                     tion 11.2-2.
                     •
                       Reference: S. G. Mikhlin (1960).

                 4.9-2. Equations With Difference Kernel: K(x, t)= K(x – t)
                                π
               21.   y(x)= λ    K(x – t)y(t) dt,  K(x)= K(–x).
                             –π
                     Characteristic values:
                                                      π
                                     1            1
                               λ n =    ,    a n =     K(x) cos(nx) dx  (n =0, 1, 2, ... ).
                                    πa n         π  –π
                     The corresponding eigenfunctions are
                                                          (2)
                                          (1)
                               y 0 (x)=1,  y (x) = cos(nx),  y (x) = sin(nx)(n =1, 2, ... ).
                                          n               n
                     For each value λ n with n ≠ 0, there are two corresponding linearly independent eigenfunctions
                      (1)
                               (2)
                     y (x) and y (x).
                               n
                      n
                     •
                       Reference: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971).
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 317
   333   334   335   336   337   338   339   340   341   342   343