Page 341 - Handbook Of Integral Equations
P. 341

b
                 4.9-3. Other Equations of the Form y(x)+  K(x, t)y(t) dt = F (x)
                                                       a

                             ∞
               26.   y(x) –    K(x + t)y(t) dt = f(x).
                            –∞
                     The Fourier transform is used to solving this equation.
                        Solution:                         √

                                                    f(u)+
                                             1    ∞        2π f(–u)K(u)  iux


                                     y(x)= √            √              e   du,
                                             2π  –∞  1 –  2π K(u)K(–u)


                     where
                                      1    ∞     –iux             1    ∞       –iux


                              f(u)= √        f(x)e   dx,  K(u)= √        K(x)e    dx.
                                      2π  –∞                       2π  –∞
                     •
                       Reference: V. A. Ditkin and A. P. Prudnikov (1965).

                             ∞
                                βt
               27.   y(x)+     e K(x + t)y(t) dt = Ae λx .
                            –∞
                     Solution:
                                       e λx  – k(λ)e –(β+λ)x       ∞      (λ+β)x
                                 y(x)=                ,    k(λ)=     K(x)e     dx.
                                       1 – k(λ)k(–β – λ)
                                                                  –∞

                             ∞
                                βt
               28.   y(x)+     [e K(x + t)+ M(x – t)]y(t) dt = Ae λx .
                            –∞
                     Solution:
                                            I k (λ)e px  – [1 + I m (p)]e λx
                                y(x)= A                              ,    p = –λ – β,
                                        I k (λ)I k (p) – [1 + I m (λ)][1 + I m (p)]
                     where

                                          ∞                         ∞
                                  I k (λ)=  K(z)e (β+λ)z  dz,  I m (λ)=  M(z)e –λz  dz.
                                         –∞                        –∞

                             ∞
               29.   y(x) –    K(xt)y(t) dt = f(x).
                            0
                     The solution can be obtained with the aid of the inverse Mellin transform:

                                              1   c+i∞                  –s
                                                       f(s)+ K(s)f(1 – s)
                                       y(x)=                           x ds,
                                             2πi        1 – K(s)K(1 – s)


                                                  c–i∞
                     where f and K stand for the Mellin transforms of the right-hand side and of the kernel of the


                     integral equation,

                                            ∞                     ∞
                                    f(s)=     f(x)x s–1  dx,  K(s)=  K(x)x s–1  dx.


                                           0                     0
                     •
                       Reference: M. L. Krasnov, A. I. Kisilev, and G. I. Makarenko (1971).

                             ∞
                                     β
                                                  λ
               30.   y(x) –    K(xt)t y(t) dt = Ax .
                            0
                     Solution:
                                            λ
                                           x + I β+λ x –β–λ–1       ∞      µ
                                    y(x)= A              ,    I µ =   K(ξ)ξ dξ.
                                             1 – I β+λ I –λ–1
                                                                   0
                     It is assumed that all improper integrals are convergent.
                 © 1998 by CRC Press LLC

               © 1998 by CRC Press LLC
                                                                                                             Page 320
   336   337   338   339   340   341   342   343   344   345   346