Page 394 - Handbook Of Integral Equations
P. 394

∞

               15.       e –λt y(t)y(xt) dt = A,  λ >0,  0 ≤ x < ∞.
                      0
                     This is a special case of equation 6.2.2 with f(t)= e –λt , a = 0, and b = ∞.
                     1 . Solutions:
                      ◦
                                          √                       √
                                    y 1 (x)=  Aλ,         y 2 (x)= – Aλ,

                                    y 3 (x)=  1 Aλ (λx – 2),  y 4 (x)= –  1  Aλ (λx – 2).
                                             2                      2
                     2 . The integral equation has some other (more complicated) solutions of the polynomial
                      ◦
                                     k
                     form y(x)=  n    B k x , where the constants B k can be found from the corresponding system
                               k=0
                     of algebraic equations. See 6.2.2 for some other solutions.
                         1
               16.      y(t)y(x + λt) dt = A,  0 ≤ x < ∞.
                      0
                     This is a special case of equation 6.2.7 with f(t) ≡ 1, a = 0, and b =1.
                        Solutions:
                                          √                       √
                                   y 1 (x)=  A,           y 2 (x)= – A,

                                   y 3 (x)=  3A/λ (1 – 2x),  y 4 (x)= –  3A/λ (1 – 2x).
                       ∞

               17.       y(t)y(x + λt) dt = Ae –βx ,  A, λ, β >0,  0 ≤ x < ∞.
                      0
                     This is a special case of equation 6.2.9 with f(t) ≡ 1, a = 0, and b = ∞.
                        Solutions:
                                      
          –βx              
          –βx
                               y 1 (x)=  Aβ(λ +1) e  ,    y 2 (x)= –  Aβ(λ +1) e  ,
                                                      –βx                         –βx
                               y 3 (x)= B β(λ +1)x – 1 e  ,  y 4 (x)= –B β(λ +1)x – 1 e  ,

                     where B =  Aβ(λ +1)/λ.
                       1

               18.      y(t)y(x – t) dt = A,  –∞ < x < ∞.
                      0
                     This is a special case of equation 6.2.10 with f(t) ≡ 1, a = 0, and b =1.
                      ◦
                     1 . Solutions with A >0:
                                        √                         √
                                 y 1 (x)=  A,             y 2 (x)= – A,
                                        √                         √
                                               2
                                                                         2
                                 y 3 (x)=  5A(6x – 6x + 1),  y 4 (x)= – 5A(6x – 6x + 1).
                      ◦
                     2 . Solutions with A <0:
                                           √                      √
                                     y 1 (x)=  –3A (1 – 2x),  y 2 (x)= – –3A (1 – 2x).
                        The integral equation has some other (more complicated) solutions of the polynomial
                                     k
                     form y(x)=  n    B k x , where the constants B k can be found from the corresponding system
                               k=0
                     of algebraic equations.
                       ∞         x

                                              b
               19.       e –λt y  y(t) dt = Ax ,   λ >0.
                                t
                      0
                                     √
                                           b
                     Solutions: y(x)= ± Aλ x .
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 374
   389   390   391   392   393   394   395   396   397   398   399