Page 392 - Handbook Of Integral Equations
P. 392

1
               5.       y(x)y(t) dt = A tanh(βx),  Aβ >0.
                      0
                     This is a special case of equation 6.2.1 with f(x)= A tanh(βx), g(t)=1, a = 0, and b =1.

                                             Aβ
                        Solutions: y(x)= ±         tanh(βx).
                                           ln cosh β

                       1

               6.       y(x)y(t) dt = A ln(βx),  A(ln β – 1) > 0.
                      0
                     This is a special case of equation 6.2.1 with f(x)= A ln(βx), g(t)=1, a = 0, and b =1.

                                             A
                        Solutions: y(x)= ±        ln(βx).
                                           ln β – 1

                       1

               7.       y(x)y(t) dt = A cos(βx),  A >0.
                      0
                     This is a special case of equation 6.2.1 with f(x)= A cos(βx), g(t)=1, a = 0, and b =1.

                                           Aβ
                        Solutions: y(x)= ±     cos(βx).
                                           sin β

                         1
               8.       y(x)y(t) dt = A sin(βx),  Aβ >0.
                      0
                     This is a special case of equation 6.2.1 with f(x)= A sin(βx), g(t)=1, a = 0, and b =1.

                                             Aβ
                        Solutions: y(x)= ±         sin(βx).
                                           1 – cos β

                         1
               9.       y(x)y(t) dt = A tan(βx),  Aβ >0.
                      0
                     This is a special case of equation 6.2.1 with f(x)= A tan(βx), g(t)=1, a = 0, and b =1.

                                            –Aβ
                        Solutions: y(x)= ±        tan(βx).
                                           ln |cos β|
                       1

                                         λ
                         µ
               10.      t y(x)y(t) dt = Ax ,   A >0,   µ + λ > –1.
                      0
                                                                        µ
                                                                λ
                     This is a special case of equation 6.2.1 with f(x)= Ax , g(t)= t , a = 0, and b =1.
                                         √            λ
                        Solutions: y(x)= ± A(µ + λ +1) x .
                         1
                         µt
               11.      e y(x)y(t) dt = Ae βx ,  A >0.
                      0
                                                                βx
                                                                         µt
                     This is a special case of equation 6.2.1 with f(x)= Ae , g(t)= e , a = 0, and b =1.

                                           A(µ + β)  βx
                        Solutions: y(x)= ±  µ+β    e .
                                           e   – 1
                 © 1998 by CRC Press LLC









                © 1998 by CRC Press LLC
                                                                                                             Page 372
   387   388   389   390   391   392   393   394   395   396   397