Page 390 - Handbook Of Integral Equations
P. 390

x


               25.   y(x)+    sin[λ(x – t)]f t, y(t) dt = g(x).
                            a
                     Differentiating the equation with respect to x twice yields
                                         x




                               y (x)+ λ    cos[λ(x – t)]f t, y(t) dt = g (x),               (1)
                                x                                 x
                                        a
                                                       x

                                                   2
                               y (x)+ λf x, y(x) – λ    sin[λ(x – t)]f t, y(t) dt = g (x).  (2)


                                xx                                             xx
                                                      a
                        Eliminating the integral term from (2) with the aid of the original equation, we arrive at
                     the second-order nonlinear ordinary differential equation
                                                       2
                                                            2
                                        y     + λf(x, y)+ λ y – λ g(x) – g (x) = 0.         (3)

                                                                   xx
                                         xx
                     By setting x = a in the original equation and in (1), we obtain the initial conditions for y = y(x):


                                             y(a)= g(a),   y (a)= g (a).                    (4)
                                                            x
                                                                  x
                        Equation (3) under conditions (4) defines the solution of the original integral equation. For
                     the exact solutions of the second-order differential equation (3) with various f(x, y) and g(x),
                     see A. D. Polyanin and V. F. Zaitsev (1995), and V. F. Zaitsev and A. D. Polyanin (1994).
                 5.8-4. Other Equations
                           1      x     t
               26.   y(x)+      f    , y(t) dt = A.
                           x  0    x
                     A solution: y(x)= λ, where λ is a root of the algebraic (or transcendental) equation
                                                                  1

                                       λ + F(λ) – A =0,   F(λ)=    f(z, λ) dz.
                                                                 0
                               x     t  y(t)
               27.   y(x)+    f    ,      dt = Ax.
                            0    x    t
                     A solution: y(x)= λx, where λ is a root of the algebraic (or transcendental) equation

                                                                  1

                                       λ + F(λ) – A =0,   F(λ)=    f(z, λ) dz.
                                                                 0
                             ∞

                                                         –λx
               28.   y(x)+     f t – x, y(t – x) y(t) dt = ae  .
                            x
                     Solutions: y(x)= b k e –λx , where b k are roots of the algebraic (or transcendental) equation
                                                            ∞

                                      b + bI(b)= a,  I(b)=    f(z, be –λz )e –λz  dz.
                                                           0








                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 370
   385   386   387   388   389   390   391   392   393   394   395