Page 385 - Handbook Of Integral Equations
P. 385

x


               2.       K(x, t)ϕ t, y(t) dt = f(x).
                      a

                     The substitution w(x)= ϕ x, y(x) leads to the linear equation
                                                 x

                                                  K(x, t)w(t) dt = f(x).
                                                a
                                                  x

                 5.8-2. Equations of the Form y(x)+  K(x, t)G y(t) dt = F (x)
                                                  a
                               x

               3.    y(x)+    f y(t) dt = A.
                            a
                     Solution in an implicit form:
                                                   y
                                                     du

                                                         + x – a =0.
                                                    f(u)
                                                  A
                             x


               4.    y(x)+    f y(t) dt = Ax + B.
                            a
                     Solution in an implicit form:
                                            y
                                               du
                                                     = x – a,  y 0 = Aa + B.
                                             A – f(u)
                                          y 0
                             x

                                                  2
               5.    y(x)+    (x – t)f y(t) dt = Ax + Bx + C.
                            a
                     1 . This is a special case of equation 5.8.19. The solution of this integral equation is
                      ◦
                     determined by the solution of the second-order autonomous ordinary differential equation
                                                 y     + f(y) – 2A =0
                                                  xx
                     under the initial conditions
                                                2

                                       y(a)= Aa + Ba + C,    y (a)=2Aa + B.
                                                              x
                      ◦
                     2 . Solutions in an implicit form:
                                        y
                                                       2        –1/2
                                         4Au – 2F(u)+ B – 4AC     du = ±(x – a),
                                      y 0
                                                 u

                                                                 2
                                         F(u)=    f(t) dt,  y 0 = Aa + Ba + C.
                                                y 0
                               x
                               λ


               6.    y(x)+    t f y(t) dt = Bx λ+1  + C.
                            a
                     By differentiation, this integral equation can be reduced to a separable ordinary differential
                     equation.
                        Solution in an implicit form:
                                      y
                                             du
                              (λ +1)                 + x λ+1  – a λ+1  =0,  y a = Ba λ+1  + C.
                                       f(u) – B(λ +1)
                                     y a

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 365
   380   381   382   383   384   385   386   387   388   389   390