Page 380 - Handbook Of Integral Equations
P. 380

x

                                λ
               4.    y(x)+ k   t cos[βy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k cos(βy).
                             x

               5.    y(x)+    g(t) cos[βy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = cos(βy).

                             x
                               cos[βy(t)]
               6.    y(x)+              dt = A.
                                ax + bt
                            0
                     This is a special case of equation 5.8.8 with f(y) = cos(βy).
                               x  cos[βy(t)]
               7.    y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = cos(βy).


                                x
               8.    y(x)+ k   e λt  cos[βy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k cos(βy).

                                x
               9.    y(x)+ k   e λ(x–t)  cos[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k cos(βy).

                                x
               10.   y(x)+ k   e λ(x–t)  cos[βy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k cos(βy).

                                x
               11.   y(x)+ k   sinh[λ(x – t)] cos[βy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k cos(βy).

                                x
               12.   y(x)+ k   sinh[λ(x – t)] cos[βy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k cos(βy).

                                x
               13.   y(x)+ k   sinh[λ(x – t)] cos[βy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k cos(βy).

                                x
               14.   y(x)+ k   sin[λ(x – t)] cos[βy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k cos(βy).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 360
   375   376   377   378   379   380   381   382   383   384   385