Page 377 - Handbook Of Integral Equations
P. 377

5.5-4. Integrands With Nonlinearity of the Form coth[βy(t)]

                              x

               43.   y(x)+ k   coth[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k coth(βy).

                              x

               44.   y(x)+ k   coth[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k coth(βy).

                              x

                                                       2
               45.   y(x)+ k   (x – t) coth[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k coth(βy).
                                x
                                λ
               46.   y(x)+ k   t coth[βy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k coth(βy).

                               x
               47.   y(x)+    g(t) coth[βy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = coth(βy).
                             x
                               coth[βy(t)]
               48.   y(x)+               dt = A.
                            0   ax + bt
                     This is a special case of equation 5.8.8 with f(y) = coth(βy).

                               x  coth[βy(t)]
               49.   y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     This is a special case of equation 5.8.9 with f(y) = coth(βy).

                              x

               50.   y(x)+ k   e λt  coth[βy(t)] dt = Be λx  + C.
                             a
                     This is a special case of equation 5.8.11 with f(y)= k coth(βy).

                              x

               51.   y(x)+ k   e λ(x–t)  coth[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k coth(βy).

                                x
               52.   y(x)+ k   e λ(x–t)  coth[βy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k coth(βy).
                                x
               53.   y(x)+ k   sinh[λ(x – t)] coth[βy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k coth(βy).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 357
   372   373   374   375   376   377   378   379   380   381   382