Page 379 - Handbook Of Integral Equations
P. 379

x

               8.    y(x)+ k   e λ(x–t)  ln[µy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.12 with f(y)= k ln(µy).

                                x
               9.    y(x)+ k   e λ(x–t)  ln[µy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k ln(µy).



                 5.6-3. Other Integrands

                               x
               10.   y(x)+    g(t) ln[λy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = ln(λy).
                              x

               11.   y(x)+ k   sinh[λ(x – t)] ln[µy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k ln(µy).

                              x

               12.   y(x)+ k   sinh[λ(x – t)] ln[µy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k ln(µy).

                                x
               13.   y(x)+ k   sinh[λ(x – t)] ln[µy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k ln(µy).

                                x
               14.   y(x)+ k   sin[λ(x – t)] ln[µy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k ln(µy).


               5.7. Equations With Trigonometric Nonlinearity

                 5.7-1. Integrands With Nonlinearity of the Form cos[βy(t)]

                                x
               1.    y(x)+ k   cos[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k cos(βy).

                                x
               2.    y(x)+ k   cos[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k cos(βy).
                              x

                                                      2
               3.    y(x)+ k   (x – t) cos[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k cos(βy).



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 359
   374   375   376   377   378   379   380   381   382   383   384