Page 374 - Handbook Of Integral Equations
P. 374

x

               10.   y(x)+ k   e λ(x–t)  cosh[βy(t)] dt = Ae λx  + B.
                             a
                     This is a special case of equation 5.8.13 with f(y)= k cosh(βy).

                                x
               11.   y(x)+ k   sinh[λ(x – t)] cosh[βy(t)] dt = Ae λx  + Be –λx  + C.
                             a
                     This is a special case of equation 5.8.14 with f(y)= k cosh(βy).
                                x
               12.   y(x)+ k   sinh[λ(x – t)] cosh[βy(t)] dt = A cosh(λx)+ B.
                             a
                     This is a special case of equation 5.8.15 with f(y)= k cosh(βy).

                              x

               13.   y(x)+ k   sinh[λ(x – t)] cosh[βy(t)] dt = A sinh(λx)+ B.
                             a
                     This is a special case of equation 5.8.16 with f(y)= k cosh(βy).

                                x
               14.   y(x)+ k   sin[λ(x – t)] cosh[βy(t)] dt = A sin(λx)+ B cos(λx)+ C.
                             a
                     This is a special case of equation 5.8.17 with f(y)= k cosh(βy).


                 5.5-2. Integrands With Nonlinearity of the Form sinh[βy(t)]

                                x
               15.   y(x)+ k   sinh[βy(t)] dt = A.
                             a
                     This is a special case of equation 5.8.3 with f(y)= k sinh(βy).

                              x

               16.   y(x)+ k   sinh[βy(t)] dt = Ax + B.
                             a
                     This is a special case of equation 5.8.4 with f(y)= k sinh(βy).
                              x

                                                      2
               17.   y(x)+ k   (x – t) sinh[βy(t)] dt = Ax + Bx + C.
                             a
                     This is a special case of equation 5.8.5 with f(y)= k sinh(βy).
                                x
                                λ
               18.   y(x)+ k   t sinh[βy(t)] dt = Bx λ+1  + C.
                             a
                     This is a special case of equation 5.8.6 with f(y)= k sinh(βy).

                             x

               19.   y(x)+    g(t) sinh[βy(t)] dt = A.
                            a
                     This is a special case of equation 5.8.7 with f(y) = sinh(βy).
                             x
                               sinh[βy(t)]
               20.   y(x)+               dt = A.
                            0   ax + bt
                     This is a special case of equation 5.8.8 with f(y) = sinh(βy).




                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 354
   369   370   371   372   373   374   375   376   377   378   379