Page 371 - Handbook Of Integral Equations
P. 371

x

                                                      2
               3.    y(x)+ k   (x – t) exp[λy(t)] dt = Ax + Bx + C.
                             a
                                                                    λy
                     1 . This is a special case of equation 5.8.5 with f(y)= ke . The solution of this integral
                      ◦
                     equation is determined by the solution of the second-order autonomous ordinary differential
                     equation
                                                 y     + ke λy  – 2A =0
                                                  xx
                     under the initial conditions
                                                2

                                       y(a)= Aa + Ba + C,    y (a)=2Aa + B.
                                                              x
                     2 . Solution in an implicit form:
                      ◦
                                        y
                                                       2        –1/2
                                         4Au – 2F(u)+ B – 4AC     du = ±(x – a),
                                      y 0
                                              k    λu             2
                                       F(u)=    e  – e λy 0  ,  y 0 = Aa + Ba + C.
                                              λ
                                x
                                 λ
               4.    y(x)+ A    t exp[βy(t)] dt = Bx λ+1  + C.
                              a
                     By differentiation, this integral equation can be reduced to a separable ordinary differential
                     equation.
                        Solution in an implicit form:

                                      y      du
                              (λ +1)                 + x λ+1  – a λ+1  =0,  y 0 = Ba λ+1  + C.
                                       Ae βu  – B(λ +1)
                                     y 0
                             x
                               exp[λy(t)]

               5.    y(x)+              dt = A.
                            0   ax + bt
                     A solution: y(x)= β, where β is a root of the transcendental equation
                                                    b  λβ

                                              ln 1+   e   + bβ – Ab =0.
                                                    a
                               x  exp[λy(t)]
               6.    y(x)+     √         dt = A.
                                   2
                            0    ax + bt 2
                     A solution: y(x)= β, where β is a root of the transcendental equation

                                                                  1  dz
                                         ke λβ  + β – A =0,  k =  √       .
                                                                0   a + bz 2
                              x

                                                     λx
               7.    y(x)+ A    exp λt + βy(t) dt = Be  + C.
                              a
                     By differentiation, this integral equation can be reduced to a separable ordinary differential
                     equation.
                        Solution in an implicit form:

                                       y
                                            du
                                   λ              + e λx  – e λa  =0,  y 0 = Be λa  + C.
                                        Ae βu  – Bλ
                                      y 0


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 351
   366   367   368   369   370   371   372   373   374   375   376