Page 368 - Handbook Of Integral Equations
P. 368

x
                                           λ–kλ–1
                                   n    n         k          λ
               5.    y(x)+ A    ax + bt      n  y (t) dt = Bx .
                              a
                                     λ
                     A solution: y = βx , where β is a root of the algebraic (or transcendental) equation
                                                            1
                                                                         λ–kλ–1
                                       k
                                   AIβ + β – B =0,    I =    z kλ    a + bz n  n  dz.
                                                           0
                                x
                                 λt µ
               6.    y(x)+ A    e y (t) dt = Be λx  + C.
                              a
                     By differentiation, this integral equation can be reduced to a separable ordinary differential
                     equation.
                        Solution in an implicit form:
                                       y
                                            du
                                   λ              + e λx  – e λa  =0,  y 0 = Be λa  + C.
                                           µ
                                         Au – Bλ
                                      y 0
                              x

                                     y (t) dt = Ae
               7.    y(x)+ k   e λ(x–t) µ        λx  + B.
                             a
                     Solution in an implicit form:
                                        y
                                              dt                       λa

                                                      = x – a,  y 0 = Ae  + B.
                                               µ
                                          λt – kt – λB
                                       y 0
                              x

                                            µ
               8.    y(x)+ k   sinh[λ(x – t)]y (t) dt = Ae λx  + Be –λx  + C.
                             a
                                                                 µ
                     This is a special case of equation 5.8.14 with f(y)= ky .
                        Solution in an implicit form:
                                 y
                                    2 2   2               2  2        –1/2
                                  λ u – 2λ Cu – 2kλF(u)+ λ (C – 4AB)     du = ±(x – a),
                                y 0
                                           1    µ+1   µ+1          λa    –λa
                                   F(u)=       u   – y 0  ,  y 0 = Ae  + Be  + C.
                                          µ +1
                              x

                                            µ
               9.    y(x)+ k   sinh[λ(x – t)]y (t) dt = A cosh(λx)+ B.
                             a
                                                                 µ
                     This is a special case of equation 5.8.15 with f(y)= ky .
                        Solution in an implicit form:
                                  y
                                     2 2   2               2  2   2    –1/2
                                   λ u – 2λ Bu – 2kλF(u)+ λ (B – A )    du = ±(x – a),
                                y 0
                                             1    µ+1  µ+1
                                    F(u)=       u    – y 0  ,  y 0 = A cosh(λa)+ B.
                                           µ +1
                              x

                                            µ
               10.   y(x)+ k   sinh[λ(x – t)]y (t) dt = A sinh(λx)+ B.
                             a
                                                                 µ
                     This is a special case of equation 5.8.16 with f(y)= ky .
                        Solution in an implicit form:
                                 y

                                     2 2   2               2  2   2    –1/2
                                   λ u – 2λ Bu – 2kλF(u)+ λ (A + B )    du = ±(x – a),
                                y 0
                                             1    µ+1  µ+1
                                     F(u)=       u   – y 0  ,  y 0 = A sinh(λa)+ B.
                                           µ +1
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 348
   363   364   365   366   367   368   369   370   371   372   373