Page 369 - Handbook Of Integral Equations
P. 369

x

                                           µ
               11.   y(x)+ k   sin[λ(x – t)]y (t) dt = A sin(λx)+ B cos(λx)+ C.
                             a
                                                                 µ
                     This is a special case of equation 5.8.17 with f(y)= ky .
                        Solution in an implicit form:
                                    y

                                        2    2 2    2              –1/2
                                      λ D – λ u +2λ Cu – 2kλF(u)     du = ±(x – a),
                                   y 0
                                                                 2
                                                             2
                                                         2
                       y 0 = A sin(λa)+ B cos(λa)+ C,  D = A + B – C ,  F(u)=  1   u µ+1  – y µ+1    .
                                                                                        0
                                                                            µ +1
                 5.3-2. Equations Containing Arbitrary Functions
                       x

                                λ
               12.      K(x, t)y (t) dt = f(x).
                      a
                                         λ
                     The substitution w(x)= y (x) leads to the linear equation
                                                  x
                                                  K(x, t)w(t) dt = f(x).
                                                a
                               x
                                   k
               13.   y(x)+    f(t)y (t) dt = A.
                            a
                     Solution:
                                                                     
 1
                                                               x      1–k
                                          y(x)= A 1–k  +(k – 1)  f(t) dt  .
                                                             a
                             x

                                       k
               14.   y(x) –   f(x)g(t)y (t) dt =0.
                            a
                      ◦
                     1 . Differentiating the equation with respect to x and eliminating the integral term (using the
                     original equation), we obtain the Bernoulli ordinary differential equation

                                                       f (x)
                                                        x
                                                   k

                                       y – f(x)g(x)y –     y =0,    y(a)=0.
                                        x
                                                       f(x)
                      ◦
                     2 . Solution with k <1:
                                                                      
 1
                                                            x          1–k
                                                             k
                                         y(x)= f(x) (1 – k)  f (t)g(t) dt  .
                                                          a
                     Additionally, for k > 0, there is the trivial solution y(x) ≡ 0.
                               x         t
                                                        λ
                                            k
               15.   y(x)+    x λ–kλ–1 f   y (t) dt = Ax .
                            0           x
                                       λ
                     A solution: y(x)= βx , where β is a root of the algebraic equation
                                                                 1
                                           k                         kλ
                                         Iβ + β – A =0,    I =   f(z)z  dz.
                                                               0


                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 349
   364   365   366   367   368   369   370   371   372   373   374